Abstract
This paper presents a new motion capture (MoCap) system, the garment-based motion capture system—GaMoCap. The key feature is the use of an easily wearable garment printed with colour-coded pattern and a generic multicamera setup with standard video cameras. The coded pattern allows a high-density distribution of markers per unit of surface (about 40 markers per 100 cm\(^2\)), avoiding markers-swap errors. The high density of markers reconstructed makes possible a simultaneous reconstruction of shape and motion, which gives several concurrent advantages with respect to the state of the art and providing performances comparable with previous marker-based systems. In particular, we provide effective solutions to counter the soft-tissue artefact which is a common problem for garment-based techniques. This effect is reduced using Point Cluster Technique to filter out the points strongly affected by non-rigid motion. Uncertainty of motion estimation has been experimentally quantified by comparing with a state-of-the-art commercial system and numerically predicted by means of a Monte Carlo Method procedure. The experimental evaluation was performed on three different articulated motions: shoulder, knee and hip flexion-extension. The results shows that for the three motion angles estimated with GaMoCap, the system provides comparable accuracies against a commercial VICON system.
Similar content being viewed by others
Notes
References
Andriacchi, T.P., Alexander, E.J., Toney, M.K., Dyrby, C.O., Sum, J.: A point cluster method for in vivo motion analysis: Applied to a study of knee kinematics. J. Biomech. Eng. Trans. ASME 120(6), 743–749 (1998)
Ballan, L., Cortelazzo, G.M.: Multimodal 3d shape recovery from texture, silhouette and shadow information. In: International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 924–930. IEEE, Chapel Hill, NC (2006). doi:10.1109/3DPVT.2006.99
Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., Sayd, P.: Coarse-to-fine low-rank structure-from-motion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Bouquet, J.Y.: Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html (2010)
Corazza, S., Gambaretto, E., Mündermann, L., Andriacchi, T.P.: Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications. IEEE Trans. Biomed. Eng. 57(4), 806–812 (2010)
De Cecco, M., Baglivo, L., Parzianello, G., Lunardelli, M., Setti, F., Pertile, M.: Uncertainty analysis for multi-stereo 3d shape estimation. In: IEEE International Workshop on Advanced Methods for Uncertainty Estimation in Measurement (AMUEM), pp. 22–27. IEEE, New York (2009)
De Cecco, M., Pertile, M., Baglivo, L., Lunardelli, M., Setti, F., Tavernini, M.: A unified framework for uncertainty, compatibility analysis, and data fusion for multi-stereo 3-d shape estimation. IEEE Trans. Instrum. Meas. 59(11), 2834–2842 (2010)
Del Bue, A., Llado, X., Agapito, L.: Non-rigid metric shape and motion recovery from uncalibrated images using priors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1191–1198 (2006)
Dorociak, R.D., Cuddeford, T.J.: Determining 3-D system accuracy for the VICON 370 system. Gait Posture 3(2), 88 (1995)
Gorton, G.E.I., Hebert, D.A., Gannotti, M.E.: Assessment of the kinematic variability among 12 motion analysis laboratories. Gait Posture 29(3), 398–402 (2009)
Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. 68(2), 146–157 (1997)
Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier, New York (1996)
Lafortune, M.A., Cavanagh, P.R., Sommer, H.J.I., Kalenak, A.: Three-dimensional kinematics of the human knee during walking. J. Biomech. 25(4), 347–357 (1992)
Leardini, A., Chiari, L., Della Croce, U., Cappozzo, A.: Human movement analysis using stereophotogrammetry: part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2), 212–225 (2005)
Lundberg, A., Svensson, O.K., Bylund, C., Selvik, G.: Kinematics of the ankle/foot complex—part 3: influence of leg rotation. Foot Ankle Int. 9(6), 304–309 (1989)
Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2006)
Mündermann, L., Corazza, S., Andriacchi, T.P.: The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J. NeuroEng. Rehab. 3(1), 1–11 (2006)
Reinschmidt, C., van den Bogert, A.J., Nigg, B.M., Lundberg, A., Murphy, N.: Effect of skin movement on the analysis of skeletal knee joint motion during running. J. Biomech. 30(7), 729–732 (1997)
Roetenberg, D., Luinge, H., Slycke, P.: Xsens MVN: full 6DOF human motion tracking using miniature inertial sensors. In: Tech. rep, Xsens Motion Technologies BV (2009)
Sandilands, P., Choi, M.G., Komura, T.: Capturing close interactions with objects using a magnetic motion capture system and a RGBD sensor. In: Kallmann, M., Bekris, K. (eds.) Motion in Games. Lecture Notes in Computer Science, vol. 7660, pp. 220–231. Springer, Berlin (2012)
Scholz, V., Stich, T., Magnor, M., Keckeisen, M., Wacker, M.: Garment motion capture using color-coded patterns. In: ACM SIGGRAPH Sketches. ACM, New York (2005)
Setti, F., De Cecco, M., Del Bue, A.: A multi-view stereo system for articulated motion analysis. In: Richard, P., Braz, J. (eds.) International Conference on Computer Vision Theory and Applications (VISAPP 2010), pp. 367–372. INSTICC Press Angers, France (2010)
Shiratori, T., Park, H.S., Sigal, L., Sheikh, Y., Hodgins, J.K.: Motion capture from body-mounted cameras. ACM Trans. Graph. 30(4), 31:1–31:10 (2011)
Shotton, J., Fitzgibbon, A.W., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: Cipolla, R., Battiato, S., Farinella, G.M. (eds.) Machine Learning for Computer Vision, Studies in Computational Intelligence, vol. 411, pp. 119–135. Springer, Berlin (2013)
Stagni, R., Fantozzi, S., Cappello, A., Leardini, A.: Quantification of soft tissue artefact in motion analysis by combining 3d fluoroscopy and stereophotogrammetry: a study on two subjects. Clin. Biomech. 20(3), 320–329 (2005)
Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice. Lecture Notes in Computer Science, vol. 1883, pp. 298–372. Springer, Berlin (2000)
Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation algorithms. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)
Weiss, A., Hirshberg, D.A., Black, M.J.: Home 3D body scans from noisy image and range data. In: International Conference on Computer Vision (ICCV), pp. 1951–1958. IEEE, New York (2011)
Welch, G., Foxlin, E.: Motion tracking: no silver bullet, but a respectable arsenal. IEEE Comput. Graph. Appl. 22(6), 24–38 (2002)
Windolf, M., Götzen, N., Morlock, M.: Systematic accuracy and precision analysis of video motion capturing systems—exemplified on the vicon-460 system. J. Biomech. 41(12), 2776–2780 (2008)
Yan, J., Pollefeys, M.: A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision—ECCV 2006. Lecture Notes in Computer Science, vol. 3954, pp. 94–106. Springer, Berlin (2006)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)
Zhou, H., Hu, H., Liu, H., Tang, J.: Classification of upper limb motion trajectories using shape features. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 970–982 (2012)
Zhou, H., Li, X., Sadka, A.H.: Nonrigid structure-from-motion from 2-d images using markov chain monte carlo. IEEE Trans. Multimed. 14(1), 168–177 (2012)
Acknowledgments
The authors would like to thank Patrick Olivier, Guy Schofield and Dave Green of Culture Lab, Newcastle University (http://di.ncl.ac.uk/) for providing the VICON system and the support during data acquisition.
Author information
Authors and Affiliations
Corresponding author
Additional information
The work was supported by the FP7-ICT-2009.7.2, Accessible and Assistive ICT, Grant 247765, IP project VERITAS.
Rights and permissions
About this article
Cite this article
Biasi, N., Setti, F., Del Bue, A. et al. Garment-based motion capture (GaMoCap): high-density capture of human shape in motion. Machine Vision and Applications 26, 955–973 (2015). https://doi.org/10.1007/s00138-015-0701-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00138-015-0701-2