Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A novel active contour model for image segmentation using local and global region-based information

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel level set geodesic model for image segmentation. In our model, we define a hybrid signed pressure force (SPF) function integrating local and global region-based information to segment inhomogeneous images. The local region-based SPF utilizes mean values on local circular regions centered in each pixel. By introducing the local image information, the images with intensity inhomogeneity can be effectively segmented. In order to reduce the dependency on complex initialization, we incorporate a global region-based SPF into this model to develop a hybrid SPF. The global SPF and the local SPF are adaptively balanced by an adaptive weight. In addition, we also extend this model to four-phase level set formulation for brain MR image segmentation. Finally, a truncated Gaussian kernel is used to regularize the level set function, which not only regularizes it but also removes the need for computationally expensive re-initialization. Experimental results indicate that the proposed method achieves superior segmentation performance in terms of accuracy and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Qin, X., Tian, Y., Yan, P.: Feature competition and partial sparse shape modeling for cardiac image sequences segmentation. Neurocomputing 149, 904–913 (2015)

    Article  Google Scholar 

  2. Qin, X., Lu, H., Tian, Y., Yan, P.: Partial sparse shape constrained sector-driven bladder wall segmentation. Mach. Vis. Appl. 26(5), 593–606 (2015)

    Article  Google Scholar 

  3. Qin, X., Li, X., Liu, Y., Lu, H., Yan, P.: Adaptive shape prior constrained level sets for bladder MR image segmentation. IEEE J. Biomed. Health Inform. 18(5), 1707–1716 (2014)

    Article  Google Scholar 

  4. Du, B., Zhang, L.: Target detection based on a dynamic subspace. Pattern Recognit. 47(1), 344–358 (2014)

    Article  Google Scholar 

  5. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed:algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  7. Vasilevskiy, A., Siddiqi, K.: Flux-maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1565–1578 (2002)

    Article  MATH  Google Scholar 

  8. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) vol. 1, pp. 430–436 (2005)

  9. Xiang, Y., Chung, A., Ye, J.: An active contour model for image segmentation based on elastic interaction. J. Comput. Phys. 219(1), 455–476 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth function and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  12. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  13. Li, C., Kao, C., Gore, J.C., Ding Z.: Implicit active contours driven by local binary fitting energy. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–7. IEEE (2007)

  14. Li, C., Kao, C., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  15. Li, C., Huang, R., Ding, Z., Gatenby, C.J., Metaxas, N.D.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 20(7), 2007–2016 (2011)

    Article  MathSciNet  Google Scholar 

  16. Ning, J., Zhang, L., Zhang, D., Wu, C.: Interactive image segmentation by maximal similarity based region merging. Pattern Recognit. 43(2), 445–456 (2010)

    Article  MATH  Google Scholar 

  17. Tian, Y., Zhou, M., Wu, Z., Wang, X.: A region-based active contour model for image segmentation. In: Proceedings of International Conference on Computational Intelligence and Security, vol. 01, pp. 376–380 (2009)

  18. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  19. Zhang, K., Song, H., Zhang, L.: Active contours driven by local image fitting energy. Pattern Recognit. 43(4), 1199–1206 (2010)

    Article  MATH  Google Scholar 

  20. Liu, S., Peng, Y.: A local region-based Chan–Vese model for image segmentation. Pattern Recognit. 45(7), 2769–2779 (2012)

    Article  MATH  Google Scholar 

  21. Wang, X., Huang, D., Xu, H.: An efficient local Chan–Vese model for image segmentation. Pattern Recognit. 43(3), 603–618 (2010)

    Article  MATH  Google Scholar 

  22. Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28(4), 668–676 (2010)

  23. Wang, L., Li, C., Sun, Q.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Graph. 33(7), 520–531 (2009)

  24. Dong, F., Chen, Z., Wang, J.: A new level set method for inhomogeneous image segmentation. Image Vis. Comput. 31(10), 809–822 (2013)

    Article  Google Scholar 

  25. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Springer, New York (2002)

    MATH  Google Scholar 

  26. Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5), 856–876 (2001)

    Article  Google Scholar 

  27. Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405–421 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (61472270 and 61402318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (rar 8611 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Peng, X., Li, G. et al. A novel active contour model for image segmentation using local and global region-based information. Machine Vision and Applications 28, 75–89 (2017). https://doi.org/10.1007/s00138-016-0805-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-016-0805-3

Keywords