Abstract
This paper presents a new effective descriptor for microfilaria. Since microfilaria is a thin elastic object, the proposed descriptor handles it locally. At each medial point of the microfilaria, the local structure of the microfilaria votes for a given shape. Accumulating these votes in the polar domain yields a rich descriptor. Experimental results show the effectiveness of the proposed approach when compared to a set of different well-established methods.
Similar content being viewed by others
References
AL-Tam, F., dos Anjos, A., Pion, S., Boussinesq, M., Shahbazkia, H.R.: Microfilariae classification using multiple classifiers for color and shape features. Open Eng. 6(1), 2016 (2016)
Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA, USA (2010)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002). https://doi.org/10.1109/34.993558
Boussinesq, M.: Loiasis. Ann. Trop. Med. Parasitol. 100(8), 715–731 (2006)
Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)
Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8(3), 263–269 (1989)
Comaniciu, D., Meer, P.: Cell image segmentation for diagnostic pathology. In: Suri, J., Setarehdan, S., Singh, S. (eds.) Advanced Algorithmic Approaches to Medical Image Segmentation, Advances in Computer Vision and Pattern Recognition, pp. 541–558. Springer, London (2002)
D’Ambrosio, M.V., Bakalar, M., Bennuru, S., Reber, C., Skandarajah, A., Nilsson, L., Switz, N., Kamgno, J., Pion, S., Boussinesq, M., Nutman, T.B., Fletcher, D.A.: Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci. Transl. Med. 7(286), 286 (2015). https://doi.org/10.1126/scitranslmed.aaa3480
Figueiredo, M., Leitao, J.: A nonsmoothing approach to the estimation of vessel contours in angiograms. IEEE Trans. Med. Imaging 14(1), 162–172 (1995)
Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement filtering. In: Wells, W., Colchester, A., Delp, S. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI-98. Lecture Notes in Computer Science, vol. 1496, pp. 130–137. Springer, Berlin (1998)
Hladůvka, J., König, A., Gröller, E.: Exploiting eigenvalues of the Hessian matrix for volume decimation. Tech. Rep. TR-186-2-00-19 (2000)
Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2), 81–121 (2004)
Li, J., Allinson, N.M.: A comprehensive review of current local features for computer vision. Neurocomputing 71(10–12), 1771–1787 (2008). https://doi.org/10.1016/j.neucom.2007.11.032
Li, K., Lu, Z., Liu, W., Yin, J.: Cytoplasm and nucleus segmentation in cervical smear images using radiating GVF snake. Pattern Recognit. 45(4), 1255–1264 (2012)
Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 465–470. San Francisco, CA, USA (1996)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Meijster, A., Roerdink, J.B., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. In: Mathematical Morphology and its Applications to Image and Signal Processing, pp. 331–340. Springer (2002)
Morard, V., Dokládal, P., Decenciere, E.: Parsimonious path openings and closings. IEEE Trans. Image Process. 23(4), 1543–1555 (2014)
Organization, W.H.: Bench aids for the diagnosis of filarial infections (1997)
Peng, Y., Dharssi, S., Chen, Q., Keenan, T.D., Agrón, E., Wong, W.T., Chew, E.Y., Lu, Z.: Deepseenet: A deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs. Ophthalmology 126(4), 565–575 (2019)
Perkins Simon, A.W., Wolfart, E.: Hypermedia Image Processing Reference. Wiley, New York (1996)
Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
van de Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010)
Soille, P., Talbot, H.: Directional morphological filtering. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1313–1329 (2001). https://doi.org/10.1109/34.969120
Steger, C.: An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998)
Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)
Tankyevych, O., Talbot, H., Dokladal, P.: Curvilinear Morpho-Hessian filter. In: The 5th IEEE International Symposium on Biomedical Imaging: From Nano (2008)
Telea, A., Van Wijk, J.J.: An augmented fast marching method for computing skeletons and centerlines. In: Proceedings of the symposium on Data Visualisation 2002, pp. 251–ff. Eurographics Association (2002)
Vedaldi, A., Fulkerson, B.: Vlfeat: An open and portable library of computer vision algorithms. In: Proceedings of the International Conference on Multimedia, MM’10, pp. 1469–1472. ACM, New York, NY, USA (2010)
Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 603–610 (2011)
Yamada, H., Yamamoto, K., Hosokawa, K.: Directional mathematical morphology and reformalized Hough transformation for the analysis of topographic maps. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 380–387 (1993). https://doi.org/10.1109/34.206957
Zhang, Y., Koydemir, H.C., Shimogawa, M.M., Yalcin, S., Guziak, A., Liu, T., Oguz, I., Huang, Y., Bai, B., Luo, Y., et al.: Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning. Light Sci. Appl. 7(1), 108 (2018)
Zhu, W., Liu, C., Fan, W., Xie, X.: Deeplung: deep 3d dual path nets for automated pulmonary nodule detection and classification. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 673–681 (2018)
Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep multi-instance networks with sparse label assignment for whole mammogram classification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 603–611. Springer (2017)
Acknowledgements
The authors are grateful to Thamar university and Infectiopôle Sud, Marseille-France, and the Bill & Melinda Gates foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
AL-Tam, F., dos Anjos, A. & Shahbazkia, H.R. Hessian-polar context: a descriptor for microfilaria recognition. Machine Vision and Applications 32, 25 (2021). https://doi.org/10.1007/s00138-020-01154-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00138-020-01154-6