Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

An ensemble approach for accelerated and noise-resilient parallel MRI reconstruction utilizing CycleGANs

  • Research
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Magnetic Resonance Imaging (MRI) is often constrained by long acquisition times. Accelerated acquisition techniques can reduce scan time but may introduce artifacts and decrease image resolution. Additionally, MRI data invariably contains noise (often Gaussian or Rician), further impacting image quality and diagnostic value. Conventional approaches often address noise and undersampling artifacts separately, leading to suboptimal image reconstruction. This work proposes a novel ensemble of CycleGAN models integrated within the Joint Sensitivity Encoding (JSENSE) framework to address these challenges in a comprehensive manner. Each CycleGAN within the ensemble is specifically trained to target distinct aspects of image degradation. This approach leverages the complementary strengths of the models to achieve a superior image reconstruction. Experiments demonstrate the effectiveness of the proposed ensemble model, outperforming conventional methods and our prior work in terms of visual quality and quantitative metrics. Significant gains were observed at higher acceleration factors and greater noise levels. The integration of CycleGANs with JSENSE yielded superior structural similarity and image clarity compared to traditional parallel MRI (pMRI) and single-model methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Khoo, V.S., Dearnaley, D.P., Finnigan, D.J., Padhani, A., Tanner, S.F., Leach, M.O.: Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. Radiother. Oncol. 42(1), 1–15 (1997). https://doi.org/10.1016/s0167-8140(96)01866-x

    Article  Google Scholar 

  2. Chang, Y., Li, Z., Saju, G., Mao, H., Liu, T.: Deep learning-based rigid motion correction for magnetic resonance imaging: a survey. Meta-Radiology 1, 100001 (2023). https://doi.org/10.1016/j.metrad.2023.100001

    Article  Google Scholar 

  3. Saju, G., Li, Z., Mao, H., Liu, T., Chang, Y.: Suppressing image blurring of propeller MRI via untrained method. Phys. Med. Biol. 68(17), 175002 (2023). https://doi.org/10.1088/1361-6560/acebb1

    Article  Google Scholar 

  4. Larkman, D.J., Nunes, R.G.: Parallel magnetic resonance imaging. Phys. Med. Biol. 52(7), 15 (2007). https://doi.org/10.1088/0031-9155/52/7/R01

    Article  Google Scholar 

  5. Feng, S., Zhu, Y., Ji, J.: Efficient large-array k-domain parallel MRI using channel-by-channel array reduction. Magn. Resonance Imaging 29(2), 209–215 (2011). https://doi.org/10.1016/j.mri.2010.08.008

    Article  Google Scholar 

  6. Feng, S., Ji, J.: Parallel magnetic resonance imaging using localized receive arrays with sinc interpolation (pilars). Magn. Resonance Med. 67(4), 1114–1119 (2012). https://doi.org/10.1002/mrm.23079

    Article  Google Scholar 

  7. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Resonance Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  8. Sodickson, D.K., Manning, W.J.: Simultaneous acquisition of spatial harmonics (smash): fast imaging with radiofrequency coil arrays. Magn. Resonance Med. 38(4), 591–603 (1997). https://doi.org/10.1002/mrm.1910380414

    Article  Google Scholar 

  9. Ying, L., Sheng, J.: Joint image reconstruction and sensitivity estimation in sense (JSENSE). Magn. Resonance Med. 57(6), 1196–1202 (2007)

    Article  Google Scholar 

  10. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017). https://doi.org/10.1109/ICCV.2017.244

  11. Saju, G., Okinaka, A., Chang, Y.: Exploiting generative adversarial networks in joint sensitivity encoding for enhanced MRI reconstruction. In: International Symposium on Visual Computing, pp. 443–451. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47966-3_35

  12. Pruessmann, K.P., Weiger, M., Börnert, P., Boesiger, P.: Advances in sensitivity encoding with arbitrary k-space trajectories. Magn. Resonance Med. 46(4), 638–651 (2001). https://doi.org/10.1002/mrm.1241

    Article  Google Scholar 

  13. Chowdhury, M.E., Khandakar, A., Hossain, B., Alzoubi, K.: Effects of the phantom shape on the gradient artefact of electroencephalography (EEG) data in simultaneous EEG-FMRI. Appl. Sci. 8(10), 1969 (2018). https://doi.org/10.3390/app8101969

    Article  Google Scholar 

  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  15. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186 . IEEE

  16. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020). https://doi.org/10.1002/mrm.21245

    Article  MathSciNet  Google Scholar 

  17. Laino, M.E., Cancian, P., Politi, L.S., Della Porta, M.G., Saba, L., Savevski, V.: Generative adversarial networks in brain imaging: a narrative review. J. Imaging 8(4), 83 (2022). https://doi.org/10.3390/jimaging8040083

    Article  Google Scholar 

  18. Pal, A., Rathi, Y.: A review and experimental evaluation of deep learning methods for MRI reconstruction. J. Mach. Learn. Biomed. Imaging 1, 001 (2022)

    Article  Google Scholar 

  19. Shitrit, O., Riklin Raviv, T.: Accelerated magnetic resonance imaging by adversarial neural network. In: Cardoso, M.J., et al. (eds.) Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support - Proceedings of the 4th International Workshop, DLMIA 2017, and 8th International Workshop, ML-CDS 2017. Lecture Notes in Computer Science, vol. 10553, pp. 30–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_4

  20. Yang, G., et al.: Dagan: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018). https://doi.org/10.1109/TMI.2017.2785879

    Article  Google Scholar 

  21. Mardani, M., et al.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2018). https://doi.org/10.1109/TMI.2018.2858752

    Article  MathSciNet  Google Scholar 

  22. Shaul, R., David, I., Shitrit, O., Raviv, T.R.: Subsampled brain MRI reconstruction by generative adversarial neural networks. Med. Image Anal. 65, 101747 (2020). https://doi.org/10.1016/j.media.2020.101747

    Article  Google Scholar 

  23. Li, Z., Zhang, T., Wan, P., Zhang, D.: Segan: structure-enhanced generative adversarial network for compressed sensing mri reconstruction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1012–1019 (2019). https://doi.org/10.1609/aaai.v33i01.33011012

  24. Murugesan, B., Vijaya Raghavan, S., Sarveswaran, K., Ram, K., Sivaprakasam, M.: Recon-GLGAN: a global-local context based generative adversarial network for MRI reconstruction. In: Knoll, F., Maier, A., Rueckert, D., Ye, J.C. (eds.) Machine Learning in Medical Imaging. MLMIR 2019. Lecture Notes in Computer Science, vol. 11905, pp. 3–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33843-5_1

  25. Deora, P., Vasudeva, B., Bhattacharya, S., Pradhan, P.M.: Structure preserving compressive sensing mri reconstruction using generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 522–523 (2020). https://doi.org/10.1109/CVPRW50498.2020.00269

  26. Saju, G., Li, Z., Abiri, R., Liu, T., Chang, Y.: Improving jsense using an initial reconstruction with an unrolled deep network prior. In: ISMRM Scientific Meeting & Exhibition, vol. 4037 (2023)

  27. Saju, G., Li, Z., Abiri, R., Liu, T., Chang, Y.: Joint estimation of coil sensitivity and image by using untrained neural network without external training data. In: ISMRM Scientific Meeting & Exhibition, vol. 3893 (2023)

  28. Dietterich, T.G.: Ensemble learning. Handbook Brain Theory Neural Netw. 2(1), 110–125 (2002)

  29. Hossain, B., Nishikawa, R.M., Lee, J.: Improving lesion detection algorithm in digital breast tomosynthesis leveraging ensemble cross-validation models with multi-depth levels. In: Medical Imaging 2022: Computer-Aided Diagnosis, SPIE, vol. 12033, pp. 77–83 (2022)

  30. Lyu, Q., Shan, H., Wang, G.: MRI super-resolution with ensemble learning and complementary priors. IEEE Trans. Comput. Imaging 6, 615–624 (2020). https://doi.org/10.1109/TCI.2020.2964201

    Article  Google Scholar 

  31. Küstner, T., Hammernik, K., Rueckert, D., Hepp, T., Gatidis, S.: Predictive uncertainty in deep learning-based MRI image reconstruction using deep ensembles: evaluation on the fast MRI data set. Magn. Resonance Med. (2024). https://doi.org/10.1002/mrm.30030

    Article  Google Scholar 

  32. Santu, S.K.K., Feng, D.: Teler: A general taxonomy of llm prompts for benchmarking complex tasks. arXiv:2305.11430 (2023)

  33. Kuzi, S., Labhishetty, S., Karmaker Santu, S.K., Joshi, P.P., Zhai, C.: Analysis of adaptive training for learning to rank in information retrieval. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2325–2328 (2019)

  34. Shamshad, F., et al.: Transformers in medical imaging: a survey. Med. Image Anal. 88, 102802 (2023). https://doi.org/10.1016/j.media.2023.102802

    Article  Google Scholar 

  35. Le Bihan, D., et al.: Diffusion tensor imaging: concepts and applications. J. Magn. Resonance Imaging 13(4), 534–546 (2001). https://doi.org/10.1002/jmri.1076

    Article  Google Scholar 

  36. DeYoe, E.A., Bandettini, P., Neitz, J., Miller, D., Winans, P.: Functional magnetic resonance imaging (fMRI) of the human brain. J. Neurosci. Methods 54(2), 171–187 (1994). https://doi.org/10.1016/0165-0270(94)90191-0

    Article  Google Scholar 

  37. Virtue, P., Lustig, M.: The empirical effect of Gaussian noise in undersampled MRI reconstruction. Tomography 3(4), 211–221 (2017). https://doi.org/10.18383/j.tom.2017.00019

    Article  Google Scholar 

  38. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Resonance Med. 34(6), 910–914 (1995). https://doi.org/10.1002/mrm.1910340618

    Article  Google Scholar 

  39. Tian, M., Song, K.: Boosting magnetic resonance image denoising with generative adversarial networks. IEEE Access 9, 62266–62275 (2021). https://doi.org/10.1109/ACCESS.2021.3073944

    Article  Google Scholar 

  40. Pankaj, D., Govind, D., Narayanankutty, K.A.: A novel method for removing Rician noise from MRI based on variational mode decomposition. Biomed. Signal Process. Control 69, 102737 (2021). https://doi.org/10.1016/j.bspc.2021.102737

    Article  Google Scholar 

  41. Cárdenas-Blanco, A., Tejos, C., Irarrazaval, P., Cameron, I.: Noise in magnitude magnetic resonance images. Concepts Magn. Resonance Part A Educ. J. 32(6), 409–416 (2008). https://doi.org/10.1002/cmr.a.20124

    Article  Google Scholar 

  42. The OpenfMRI dataset. https://www.openfmri.org/dataset/. Accessed 04 Mar 2024

Download references

Funding

This work was partially supported by the National Science Foundation under Grant No. 2050972.

Author information

Authors and Affiliations

Authors

Contributions

G.A.S. worked on the data acquisition, coding, writing, and data analysis. A.O. worked on coding, data analysis, and writing. M.A. worked on data analysis and interpretation. Y.C. worked on writing and revision.

Corresponding author

Correspondence to Yuchou Chang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saju, G.A., Okinaka, A., Akhi, M. et al. An ensemble approach for accelerated and noise-resilient parallel MRI reconstruction utilizing CycleGANs. Machine Vision and Applications 35, 136 (2024). https://doi.org/10.1007/s00138-024-01617-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-024-01617-0

Keywords