Abstract
Our work is a contribution to the model theory of fuzzy predicate logics. In this paper we characterize elementary equivalence between models of fuzzy predicate logic using elementary mappings. Refining the method of diagrams we give a solution to an open problem of Hájek and Cintula (J Symb Log 71(3):863–880, 2006, Conjectures 1 and 2). We investigate also the properties of elementary extensions in witnessed and quasi-witnessed theories, generalizing some results of Section 7 of Hájek and Cintula (J Symb Log 71(3):863–880, 2006) and of Section 4 of Cerami and Esteva (Arch Math Log 50(5/6):625–641, 2011) to non-exhaustive models.
Similar content being viewed by others
References
Belohlávek R.: Fuzzy Relational Systems: Foundations and Principles. Springer, Berlin (2002)
Cerami M., Esteva F.: Strict core fuzzy logics and quasi-witnessed models. Arch. Math. Log. 50(5/6), 625–641 (2011)
Chang C.C., Keisler H.J.: Model Theory, Studies in Logic, 73. North-Holland, Amsterdam (1990)
Cignoli R., Esteva F., Godo L., Torrens A.: Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft. Comput. 4(2), 106–112 (2000)
Cintula, P.: From fuzzy logic to fuzzy mathematics. Ph.D. dissertation, Czech Technical University, Prague (2005)
Cintula P., Hájek P.: Triangular norm based predicate fuzzy logics. Fuzzy Sets Syst. 161, 311–346 (2010)
Cintula P., Esteva F., Gispert J., Godo L., Montagna F., Noguera C.: Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalencies. Ann. Pure Appl. Log. 160(1), 53–81 (2009)
Dellunde, P.: Preserving mappings in fuzzy predicate logics. J. Log. Comput. (2011, in press)
Dellunde, P., Esteva, F.: On elementary extensions for fuzzy predicate logics. In: Proceedings of IPMU 2010, 6178:747–756 (2010)
Di Nola, A., Gerla, G.: Fuzzy models of first order languages. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 32, 331–340 (1986)
Esteva F., Godo L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124(3), 271–288 (2001)
Hájek P.: Metamathematics of Fuzzy Logic, Trends in Logic—Studia Logica Library, 4. Kluwer, Dordrecht (1998)
Hájek P.: Making fuzzy description logic more general. Fuzzy Sets Syst. 154(1), 1–15 (2005)
Hájek P.: On witnessed models in fuzzy logic. Math. Log. Q. 53(1), 66–77 (2007)
Hájek P.: On witnessed models in fuzzy logic II. Math. Log. Q. 53(6), 610–615 (2007)
Hájek P., Cintula P.: On theories and models in fuzzy predicate logics. J. Symb. Log. 71(3), 863–880 (2006)
Jenei S., Montagna F.: A proof of standard completeness for Esteva and Godo’s logic MTL. Studia Logica 70(2), 183–192 (2002)
Laskowski M.C., Malekpour S.: Provability in predicate product logic. Arch. Math. Log. 46(5), 365–378 (2007)
Montagna F.: Interpolation and Beth’s property in propositional many-valued logics: a semantic investigation. Ann. Pure Appl. Log. 141(1–2), 148–179 (2006)
Novák V., Perfilieva I., Močkoř J.: Mathematical Principles of Fuzzy Logic, The Kluwer International Series in Engineering and Computer Science, 517. Kluwer, Boston (1999)
Rasiowa H.: An Algebraic Approach to Non-classical Logics. North-Holland, Amsterdam (1974)
Rasiowa H., Sikorski R.: The Mathematics of the Metamathematics. P.W.N., Warszawa (1963)
Tarski A.: Der wahrheitsbegriff in den formalisierten sprachen. Studia Philosophica 1, 261–405 (1935)
Tarski A., Vaught R.L.: Arithmetical extensions of relational systems. Compositio Math. 13, 81–102 (1957)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dellunde, P., Esteva, F. On elementary equivalence in fuzzy predicate logics. Arch. Math. Logic 52, 1–17 (2013). https://doi.org/10.1007/s00153-012-0303-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-012-0303-x
Keywords
- Mathematical logic and foundations
- Model theory
- Fuzzy predicate logics
- Elementary extensions
- Witnessed models
- Quasi-witnessed models