Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ramsey-type graph coloring and diagonal non-computability

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

A function is diagonally non-computable (d.n.c.) if it diagonalizes against the universal partial computable function. D.n.c. functions play a central role in algorithmic randomness and reverse mathematics. Flood and Towsner asked for which functions h, the principle stating the existence of an h-bounded d.n.c. function (h-DNR) implies Ramsey-type weak König’s lemma (RWKL). In this paper, we prove that for every computable order h, there exists an \({\omega}\) -model of h-DNR which is not a not model of the Ramsey-type graph coloring principle for two colors (RCOLOR 2) and therefore not a model of RWKL. The proof combines bushy tree forcing and a technique introduced by Lerman, Solomon and Towsner to transform a computable non-reducibility into a separation over \({\omega}\) -models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambos-Spies K., Kjos-Hanssen B., Lempp S., Slaman T.A.: Comparing DNR and WWKL. J. Symb. Log. 69(04), 1089–1104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bienvenu, L., Patey, L.: Diagonally non-computable functions and fireworks. Submitted.

  3. Bienvenu, L., Patey, L., Shafer, P.: A Ramsey-type König’s lemma and its variants. Submitted. arXiv:1411.5874 (2014)

  4. Dorais, F.G., Hirst, J.L., Shafer, P.: Comparing the strength of diagonally non-recursive functions in the absence of \({{\Sigma^{0}_{2}}}\) induction. arXiv:1401.3823 (2014)

  5. Downey R.G., Hirschfeldt D.R.: Algorithmic Randomness and Complexity. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Flood S.: Reverse mathematics and a Ramsey-type König’s lemma. J. Symb. Log. 77(4), 1272–1280 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flood, Stephen, Towsner, Henry: Separating principles below WKL0, (2014). in preparation

  8. Friedman, H.M.: Some systems of second order arithmetic and their use. In: Proceedings of the International Congress of Mathematicians, Vancouver, vol. 1, pp. 235–242 (1974)

  9. Greenberg N., Miller J.S.: Lowness for Kurtz randomness. J. Symb. Log. 74(2), 665–678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirst, J.L.: Marriage theorems and reverse mathematics. In: Logic and computation (Pittsburgh, PA, 1987), vol. 106 of Contemp. Math., pp. 181–196. Am. Math. Soc., Providence, RI, (1990)

  11. Jockusch C., Soare R.: Degrees of members of \({\Pi^{0}_{1}}\) classes. Pac. J. Math. 40, 605–616 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jockusch C.G., Lerman M., Soare R.I., Solovay R.M.: Recursively enumerable sets modulo iterated jumps and extensions of Arslanov’s completeness criterion. J. Symb. Log. 54(4), 1288–1323 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jockusch C.G., Lewis A.E.M.: Diagonally non-computable functions and bi-immunity. J. Symb. Log. 78(3), 977–988 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jockusch C.G. Jr.: Degrees of functions with no fixed points. Stud. Log. Found. Math. 126, 191–201 (1989)

    Article  MathSciNet  Google Scholar 

  15. Khan, M., Miller, J.S.: Forcing with bushy trees. arXiv:1503.08870 (2015)

  16. Kjos-Hanssen Bjørn: Infinite subsets of random sets of integers. Math. Res. Lett. 16, 103–110 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kučera A.: Measure, \({\Pi^{0}_{1}}\) classes, and complete extensions of PA. Lect. Notes Math. 1141, 245–259 (1985)

    Article  Google Scholar 

  18. Kumabe M., Lewis A.E.M.: A fixed point free minimal degree. J. Lond. Math. Soc. 80(3), 785–797 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lerman M., Solomon R., Towsner H.: Separating principles below Ramsey’s theorem for pairs. J. Math. Log. 13(02), 1350007 (2013)

    Article  MathSciNet  Google Scholar 

  20. Liu Jiayi: \({RT^{0}_{1}}\) does not imply WKL0. J. Symb. Log. 77(2), 609–620 (2012)

    Article  MATH  Google Scholar 

  21. Miller, J.S.: Assorted results in and about effective randomness. In preparation

  22. Soare R.I.: Recursively Enumerable Sets and Degrees: A Study of Computable Functions and Computably Generated Sets. Springer Science and Business Media, Berlin (1987)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Patey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patey, L. Ramsey-type graph coloring and diagonal non-computability. Arch. Math. Logic 54, 899–914 (2015). https://doi.org/10.1007/s00153-015-0448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-015-0448-5

Keywords

Mathematics Subject Classification