Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Physics-based modeling and simulation of human walking: a review of optimization-based and other approaches

  • Medical and Bioengineering Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A review of human walking modeling and simulation is presented. This review focuses on physics-based human walking simulations in the robotics and biomechanics literature. The gait synthesis methods are broadly divided into five categories: (1) inverted pendulum model; (2) passive dynamics walking; (3) zero moment point (ZMP) methods; (4) optimization-based methods; and (5) control-based methods. Features of various methods are discussed, and their advantages and disadvantages are delineated. The modeling, formulation, and computation aspects of each method are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackermann M, van den Bogert AJ (2010) Optimality principles for model-based prediction of human gait. J Biomech. doi:10.1016/j.jbiomech.2009.12.012

    Google Scholar 

  • Albert A, Gerth W (2003) Analytic path planning algorithms for bipedal robots without a trunk. J Intell Robot Syst 36(2):109–127

    Google Scholar 

  • Anderson KS, Hsu YH (2002) Analytical fully-recursive sensitivity analysis for multibody dynamic chain systems. Multibody Syst Dyn 8(1):1–27

    MathSciNet  MATH  Google Scholar 

  • Anderson FC, Pandy MG (1993) Storage and utilization of elastic strain energy during jumping. J Biomech 26(12):1413–1427

    Google Scholar 

  • Anderson FC, Pandy MG (2001a) Dynamic optimization of human walking. J Biomech Eng-Trans Asme 123(5):381–390

    Google Scholar 

  • Anderson FC, Pandy MG (2001b) Static and dynamic optimization solutions for gait are practically equivalent. J Biomech 34(2):153–161

    Google Scholar 

  • Anderson FC, Goldberg SR, Pandy MG, Delp SL (2004) Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis. J Biomech 37(5):731–737

    Google Scholar 

  • Anderson MS, Damsgaard M, Rasmussen J (2007) A study of the effects of two different kinematical analysis methods on the calculated muscle activities in an inverse dynamics-based musculoskeletal model of gait. In: 20th Nordic seminar on computational mechanics, Gothenburg, Sweden

  • Arnold AS, Anderson FC, Pandy MG, Delp SL (2005) Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. J Biomech 38(11):2181–2189

    Google Scholar 

  • Arnold AS, Thelen DG, Schwartz MH, Anderson FC, Delp SL (2007) Muscular coordination of knee motion during the terminal-swing phase of normal gait. J Biomech 40(13):3314–3324

    Google Scholar 

  • Arora JS, Wang Q (2005) Review of formulations for structural and mechanical system optimization. Struct Multidisc Optim 30(4):251–272

    MathSciNet  Google Scholar 

  • Arora JS, Chahande AI, Paeng JK (1991) Multiplier methods for engineering optimization. Int J Numer Methods Eng 32(7):1485–1525

    MathSciNet  MATH  Google Scholar 

  • Asano F, Yamakita M, Kamamichi N, Luo ZW (2004) A novel gait generation for biped walking robots based on mechanical energy constraint. IEEE Trans Robot Autom 20(3):565–573

    Google Scholar 

  • Ayyappa E (1997) Normal human locomotion, part 1: basic concepts and terminology. J Prosthet Orthot 9(1):10–17

    Google Scholar 

  • Azevedo C, Poignet P, Espiau B (2004) Artificial locomotion control: from human to robots. Robot Auton Syst 47(4):203–223

    Google Scholar 

  • Barthelemy JFM, Hall LE (1995) Automatic differentiation as a tool in engineering design. Struct Optim 9(2):76–82

    Google Scholar 

  • Beletskii VV, Chudinov PS (1977) Parametric optimization in the problem of biped locomotion. Mechanics of Solids 12(1):25–35

    Google Scholar 

  • Bessonnet G, Sardain P, Chesse S (2002) Optimal motion synthesis—dynamic modeling and numerical solving aspects. Multibody Syst Dyn 8(3):257–278

    MathSciNet  MATH  Google Scholar 

  • Bessonnet G, Chesse S, Sardain P (2004) Optimal gait synthesis of a seven-link planar biped. Int J Rob Res 23(10–11):1059–1073

    Google Scholar 

  • Bessonnet G, Seguin P, Sardain P (2005) A parametric optimization approach to walking pattern synthesis. Int J Rob Res 24(7):523–536

    Google Scholar 

  • Bessonnet G, Marot J, Seguin P, Sardain P (2009) Parametric-based dynamic synthesis of 3D-gait. Robotica doi:10.1017/S0263574709990257

  • Borzova E, Hurmuzlu Y (2004) Passively walking five-link robot. Automatica 40(4):621–629

    MathSciNet  MATH  Google Scholar 

  • Bottasso CL, Prilutsky BI, Croce A, Imberti E, Sartirana S (2006) A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system. Multibody Syst Dyn 16(2):123–154

    MathSciNet  MATH  Google Scholar 

  • Capi G, Yokota M, Mitobe K (2006) Optimal multi-criteria humanoid robot gait synthesis—an evolutionary approach. Int J Innovative Computing Information Control 2(6):1249–1258

    Google Scholar 

  • Channon PH, Hopkins SH, Pham DT (1992) Derivation of optimal walking motions for a bipedal walking robot. Robotica 10:165–172

    Google Scholar 

  • Chevallereau C, Aoustin Y (2001) Optimal reference trajectories for walking and running of a biped robot. Robotica 19:557–569

    Google Scholar 

  • Choi MG, Lee J, Shin SY (2003) Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Trans Graph 22(2):182–203

    Google Scholar 

  • Chow CK, Jacobson DH (1971) Studies of human locomotion via optimal programming. Math Biosci 10:239–306

    Google Scholar 

  • Collins SH, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712):1082–1085

    Google Scholar 

  • Collins SH, Wisse M, Ruina A (2001) A three-dimensional passive-dynamic walking robot with two legs and knees. Int J Rob Res 20(7):607–615

    Google Scholar 

  • Collins SH, Adamczyk PG, Kuo AD (2009) Dynamic arm swinging in human walking. Proc R Soc B-Biol Sci 276(1673):3679–3688

    Google Scholar 

  • Davy DT, Audu ML (1987) A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J Biomech 20(2):187–201

    Google Scholar 

  • Delp SL, Loan JP (2000) A computational framework for simulating and analysing human and animal movement. Comput Sci Eng 2(5):46–55

    Google Scholar 

  • Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices. ASME J Appl Mech 22:215–221

    MathSciNet  MATH  Google Scholar 

  • Eberhard P, Bischof C (1999) Automatic differentiation of numerical integration algorithms. Math Comput 68(226):717–731

    MathSciNet  MATH  Google Scholar 

  • Erdemir A, McLean S, Herzog W, van den Bogert AJ (2007) Model-based estimation of muscle forces exerted during movements. Clin Biomech 22:131–154

    Google Scholar 

  • Forster E (2004) Predicting muscle forces in the human lower limb during locomotion. PhD thesis, University of Ulm, Germany

  • Fregly BJ, Reinbolt JA, Rooney KL, Mitchell KH, Chmielewski TL (2007) Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans Biomed Eng 54(9):1687–1695

    Google Scholar 

  • Furusho J, Sano A (1990) Sensor-based control of a 9-link biped. Int J Rob Res 9(2):83–98

    Google Scholar 

  • Garcia CE, Prett DM, Morari M (1989) Model predictive control—theory and practice—a survey. Automatica 25(3):335–348

    MATH  Google Scholar 

  • Garcia M, Chatterjee A, Ruina A, Coleman M (1998) The simplest walking model: stability, complexity, and scaling. J Biomech Eng-Trans ASME 120(2):281–288

    Google Scholar 

  • Gill PE, Murray W, Saunders MA (2002) SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006

    MathSciNet  MATH  Google Scholar 

  • Goldberg SR, Anderson FC, Pandy MG, Delp SL (2004) Muscles that influence knee flexion velocity in double support: implications for stiff-knee gait. J Biomech 37(8):1189–1196

    Google Scholar 

  • Goswami A (1999) Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int J Rob Res 18(6):523–533

    MathSciNet  Google Scholar 

  • Goswami A, Thuilot B, Espiau B (1996) Compass-like biped robot part i: stability and bifurcation of passive gaits. Res. Rep. INRIA 2613. http://www.inria.fr/rrrt/rr-2996.html. Accessed 3 March 2010

  • Goswami A, Thuilot B, Espiau B (1998) A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int J Rob Res 17(12):1282–1301

    Google Scholar 

  • Gubina F, Hemami H, Mcghee RB (1974) Dynamic stability of biped locomotion. IEEE Trans Biomed Eng 21(2):102–108

    Google Scholar 

  • Ha T, Choi CH (2007) An effective trajectory generation method for bipedal walking. Robot Auton Syst 55(10):795–810

    Google Scholar 

  • Harada K, Kajita S, Kaneko K, Hirukawa H (2006) An analytical method for real-time gait planning for humanoid robots. Int J Humanoid Robot 3(1):1–19

    Google Scholar 

  • Higginson JS, Zajac FE, Neptune RR, Kautz SA, Delp SL (2006) Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J Biomech 39(10):1769–1777

    Google Scholar 

  • Hirai K (1999) The Honda humanoid robot: development and future perspective. Ind Rob 26(4):260–266

    Google Scholar 

  • Hirai K, Hirose M, Haikawa Y, Takenaka T (1998) The development of Honda humanoid robot. In: Proceedings of the 1998 IEEE international conference on robotics and automation, Leuven, Belgium, pp 1321–1326

  • Hirukawa H, Hattori S, Harada K, Kajita S, Kaneko K, Kanehiro F, Fujiwara K, Morisawa M (2006) A universal stability criterion of the foot contact of legged robots-adios ZMP. In: Proceedings of the 2006 IEEE international conference on robotics and automation, Orlando, Florida, pp 1976–1983

  • Hirukawa H, Hattori S, Kajita S, Harada K, Kaneko K, Kanehiro F, Morisawa M, Nakaoka S (2007) A pattern generator of humanoid robots walking on a rough terrain. In: Proceedings of the 2007 IEEE international conference on robotics and automation, Roma, Italy, pp 2181–2187

  • Hu LY, Zhou CJ, Sun ZQ (2008) Estimating biped gait using spline-based probability distribution function with Q-learning. IEEE Trans Ind Electron 55(3):1444–1452

    Google Scholar 

  • Huang Q, Yokoi K, Kajita S, Kaneko K, Arai H, Koyachi N, Tanie K (2001) Planning walking patterns for a biped robot. IEEE Trans Robot Autom 17(3):280–289

    Google Scholar 

  • Hull DG (1997) Conversion of optimal control problems into parameter optimization problems. J Guid Control Dyn 20(1):57–60

    MATH  Google Scholar 

  • Hull DG (2003) Optimal control theory for applications. Springer, Berlin

    MATH  Google Scholar 

  • Hurmuzlu Y (1993) Dynamics of bipedal gait Part II: stability analysis of a planar 5-link biped. J Appl Mech-Trans ASME 60(2):337–343

    Article  Google Scholar 

  • Hurmuzlu Y, Ephanov A (2002) Generating pathological gait patterns via the use of robotic locomotion models. J Technol Health Care 10:135–146

    Google Scholar 

  • Hurmuzlu Y, Genot F, Brogliato B (2004) Modeling, stability and control of biped robots—a general framework. Automatica 40(10):1647–1664

    MathSciNet  MATH  Google Scholar 

  • Inman VT, Ralston RJ, Todd F (1981) Human walking. Wilkins & Wilkins, Baltimore

    Google Scholar 

  • Juang JG (2000) Fuzzy neural network approaches for robotic gait synthesis. IEEE Trans Syst Man Cybern Part B-Cybern 30(4):594–601

    Google Scholar 

  • Kajita S, Tani K (1991). Study of dynamic biped locomotion on rugged terrain. In: Proceedings of the 1991 IEEE international conference on robotics and automation, Sacramento, CA, pp 1405–1411

  • Kajita S, Yamaura T, Kobayashi A (1992) Dynamic walking control of a biped robot along a potential-energy conserving orbit. IEEE Trans Robot Autom 8(4):431–438

    Google Scholar 

  • Kajita S, Matsumoto O, Saigo M (2001) Real-time 3D walking pattern generation for biped robot with telescopic legs. In: 2001 IEEE international conference on robotics and automation, Seoul, Korea, pp 2299–2306

  • Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Yokoi K, Hirukawa H (2002) A realtime pattern generator for biped walking. In: Proceedings of the 2002 IEEE international conference on robotics and automation, Washington, DC, pp 31–37

  • Kajita S, Kanehiro F, Kaneko K, Fujiwara K, Harada K, Yokoi K, Hirukawa H (2003) Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the 2003 IEEE international conference on robotics and automation, Taipei, Taiwan, pp 1620–1626

  • Kaphle M, Eriksson A (2008) Optimality in forward dynamics simulations. J Biomech 41(6):1213–1221

    Google Scholar 

  • Katic D, Vukobratović M (2003) Survey of intelligent control techniques for humanoid robots. J Intell Robot Syst 37(2):117–141

    Google Scholar 

  • Kim JG, Baek JH, Park FC (1999) Newton-type algorithms for robot motion optimization. In: Proceedings of the 1999 IEEE international conference on intelligent robots and systems, Kyongju, South Korea, pp 1842–1847

  • Kim HJ, Horn E, Arora JS, Abdel-Malek K (2005) An optimization-based methodology to predict digital human gait motion. In: Digital human modeling for design and engineering symposium, Iowa City, IA

  • Kim HJ, Wang Q, Rahmatalla S, Swan CC, Arora JS, Abdel-Malek K, Assouline JG (2008) Dynamic motion planning of 3D human locomotion using gradient-based optimization. J Biomech Eng 130(3):031002

    Google Scholar 

  • Kim HJ, Fernandez JW, Akbarshahi M, Walter JP, Fregly BJ, Pandy MG (2009) Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant. J Orthop Res 27(10):1326–1331

    Google Scholar 

  • Koopman B, Grootenboer HJ, Dejongh HJ (1995) An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking. J Biomech 28(11):1369–1376

    Google Scholar 

  • Kudoh S, Komura T (2003) C2 continuous gait-pattern generation for biped robots. In: Proceedings of the 2003 IEEE international conference on intelligent robots and systems, Las Vegas, Nevada, pp 1135–1140

  • Kuo AD (1999) Stabilization of lateral motion in passive dynamic walking. Int J Rob Res 18(9):917–930

    Google Scholar 

  • Kuo AD (2001) A simple model of bipedal walking predicts the preferred speed-step length relationship. J Biomech Eng-Trans Asme 123(3):264–269

    Google Scholar 

  • Kuo AD (2002) Energetics of actively powered locomotion using the simplest walking model. J Biomech Eng-Trans ASME 124(1):113–120

    Google Scholar 

  • Kuo AD, Donelan JM, Ruina A (2005) Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc Sport Sci Rev 33(2):88–97

    Google Scholar 

  • Leboeuf F, Bessonnet G, Seguin P, Lacouture P (2006) Energetic versus sthenic optimality criteria for gymnastic movement synthesis. Multibody Syst Dyn 16(3):213–236

    MATH  Google Scholar 

  • Lo J, Huang G, Metaxas D (2002) Human motion planning based on recursive dynamics and optimal control techniques. Multibody Syst Dyn 8(4):433–458

    MathSciNet  MATH  Google Scholar 

  • Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidisc Optim 26(6):369–395

    MathSciNet  Google Scholar 

  • Marshall RN, Wood GA, Jennings LS (1989) Performance objectives in human movement: a review and application to the stance phase of normal walking. Hum Mov Sci 8(6):571–594

    Google Scholar 

  • Matsumoto O, Kajita S, Saigo M, Tani K (1999) Biped-type leg-wheeled robot. Adv Robot 13(3):235–236

    Google Scholar 

  • Mayne DQ, Michalska H (1990) Receding horizon control of nonlinear-systems. IEEE Trans Automat Contr 35(7):814–824

    MathSciNet  MATH  Google Scholar 

  • McGeer T (1990a) Passive dynamic walking. Int J Rob Res 9(2):62–82

    Google Scholar 

  • McGeer T (1990b) Passive walking with knees. In: Proceedings of the 1990 IEEE international conference on robotics and automation, Cincinnati, USA, pp 1640–1645

  • Mehrotra S (1992) On the Implementation of a primal-dual interior point method. SIAM J Optim 2(4):575–601

    MathSciNet  MATH  Google Scholar 

  • Mita T, Yamaguchi T, Kashiwase T, Kawase T (1984) Realization of a high-speed biped using modern control-theory. Int J Control 40(1):107–119

    Google Scholar 

  • Miura H, Shimoyama I (1984) Dynamic walk of a biped. Int J Rob Res 3(2):60–74

    Google Scholar 

  • Mochon S, Mcmahon TA (1980) Ballistic walking—an improved model. Math Biosci 52(3–4):241–260

    MathSciNet  MATH  Google Scholar 

  • Mu XP, Wu Q (2003) Synthesis of a complete sagittal gait cycle for a five-link biped robot. Robotica 21:581–587

    Google Scholar 

  • Multon F, France L, Cani-Gascuel MP, Debunne G (1999) Computer animation of human walking: a survey. J Vis Comput Animat 10(1):39–54

    Google Scholar 

  • Neptune RR, Kautz SA, Zajac FE (2000) Muscle contributions to specific biomechanical functions do not change in forward versus backward pedaling. J Biomech 33:155–164

    Google Scholar 

  • Neptune RR, Kautz SA, Zajac FE (2001) Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 34:1387–1398

    Google Scholar 

  • Neptune RR, Sasaki K, Kautz SA (2008) The effect of walking speed on muscle function and mechanical energetics. Gait Posture 28(1):135–143

    Google Scholar 

  • Neptune RR, Clark DJ, Kautz SA (2009a) Modular control of human walking: a simulation study. J Biomech 42:1282–1287

    Google Scholar 

  • Neptune RR, McGowan CP, Fiandt JM (2009b) The influence of muscle physiology and advanced technology on sports performance. Annu Rev Biomed Eng 11:81–107

    Google Scholar 

  • Pandy MG (2001) Computer modeling and simulation of human movement. Annu Rev Biomed Eng 3:245–273

    Google Scholar 

  • Pandy MG, Zajac FE, Sim E, Levine WS (1990) An optimal control model for maximum-height human jumping. J Biomech 23(12):1185–1198

    Google Scholar 

  • Pandy MG, Anderson FC, Hull DG (1992) A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. ASME J Biomech Eng 114(4):343–363

    Google Scholar 

  • Pandy MG, Garner BA, Anderson FC (1995) Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. J Biomech Eng 117:15–26

    Google Scholar 

  • Park J, Kim K (1998) Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control. In: Proceedings of the 1998 IEEE international conference on robotics and automation, pp 3528–3533

  • Perry J (1992) Gait analysis: normal and pathological function. Slack, Thorofare

    Google Scholar 

  • Pettre J, Laumond JP (2006) A motion capture-based control-space approach for walking mannequins. Computer Animation and Virtual Worlds 17(2):109–126

    Google Scholar 

  • Qin SJ, Badgwell TA (2003) A survey of industrial model predictive control technology. Control Eng Pract 11(7):733–764

    Google Scholar 

  • Raibert MH (1986) Legged robots that balance. MIT Press, Cambridge

    Google Scholar 

  • Rasmussen J, Damsgaard M, Voigt M (2001) Muscle recruitment by the min/max criterion—a comparative numerical study. J Biomech 34(3):409–415

    Google Scholar 

  • Ren L, Jones RK, Howard D (2007) Predictive modeling of human walking over a complete gait cycle. J Biomech 40(7):1567–1574

    Google Scholar 

  • Rostami M, Bessonnet G (2001) Sagittal gait of a biped robot during the single support phase. Part 2: optimal motion. Robotica 19:241–253

    Google Scholar 

  • Roussel L, Canudas-de-Wit C, Goswami A (1998) Generation of energy optimal complete gait cycles for biped. Proc IEEE Int Conf Rob Auto 3:2036–2042

    Google Scholar 

  • Rutkovskii SV (1985) Walking, skipping and running of a bipedal robot with allowance for impact. Mechanics of Solids 20(5):44–49

    MathSciNet  Google Scholar 

  • Saidouni T, Bessonnet G (2003) Generating globally optimised sagittal gait cycles of a biped robot. Robotica 21:199–210

    Google Scholar 

  • Sardain P, Bessonnet G (2004a) Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Trans Syst Man Cybern Part A Syst Humans 34(5):630–637

    Google Scholar 

  • Sardain P, Bessonnet G (2004b) Zero moment point—measurements from a human walker wearing robot feet as shoes. IEEE Trans Syst Man Cybern Part A Syst Humans 34(5):638–648

    Google Scholar 

  • Saunders JBDM, Inman VT, Eberhart HD (1953) The major determinants in normal and pathological gait. J Bone Jt Surg-Am Vol 35-A(3):543–558

    Google Scholar 

  • Seth A, Pandy MG (2007) A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. J Biomech 40(2):356–366

    Google Scholar 

  • Shih CL (1996) The dynamics and control of a biped walking robot with seven degrees of freedom. J Dyn Syst Meas Control-Trans ASME 118(4):683–690

    MATH  Google Scholar 

  • Shih CL (1997) Gait synthesis for a biped robot. Robotica 15:599–607

    Google Scholar 

  • Sohl GA, Bobrow JE (2001) A recursive multibody dynamics and sensitivity algorithm for branched kinematic chains. J Dyn Syst Meas Control-Trans ASME 123(3):391–399

    Google Scholar 

  • Srinivasan M, Ruina A (2006) Computer optimization of a minimal biped model discovers walking and running. Nature 439(7072):72–75

    Google Scholar 

  • Srinivasan S, Raptis IA, Westervelt ER (2008) Low-dimensional sagittal plane model of normal human walking. J Biomech Eng 130(5):051017

    Google Scholar 

  • Srinivasan S, Westervelt ER, Hansen AH (2009) A low-dimensional sagittal-plane forward-dynamic model for asymmetric gait and its application to study the gait of transtibial prosthesis users. J Biomech Eng 131(3):031003

    Google Scholar 

  • Sutherland D (1988) Development of mature walking. MacKeith, Philadelphia

    Google Scholar 

  • Takanishi A, Ishida M, Yamazaki Y, Kato I (1985) The realization of dynamic walking by biped walking robot WL-10RD. In: Proceeding of the 1985 international conference on advanced robotics, pp 459–466

  • Thelen DG, Anderson FC (2006) Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech 39(6):1107–1115

    Google Scholar 

  • Thelen DG, Anderson FC, Delp SL (2003) Generating dynamic simulations of movement using computed muscle control. J Biomech 36(3):321–328

    Google Scholar 

  • Tlalolini D, Aoustin Y, Chevallereau C (2010) Design of a walking cyclic gait with single support phases and impacts for the locomotor system of a thirteen-link 3D biped using the parametric optimization. Multibody Syst Dyn 23:33–56

    MathSciNet  MATH  Google Scholar 

  • Vaughan CL (2003) Theories of bipedal walking: an odyssey. J Biomech 36(4):513–523

    Google Scholar 

  • Vukobratović M, Borovac B, Potkonjak V (2006) ZMP: a review of some basic misunderstandings. Int J Humanoid Robot 3(2):153–175

    Google Scholar 

  • Vukobratović M, Borovac B (2004) Zero-moment point—thirty five years of its life. Int J Humanoid Robot 1(1):157–173

    Google Scholar 

  • Vukobratović M, Juricic D (1969) Contribution to synthesis of biped gait. IEEE Trans Biomed Eng Bm16(1):1–6

    Google Scholar 

  • Vukobratović M, Borovac B, Surla D, Stokic D (1990) Biped locomotion, dynamics, stability, control and application. Springer Verlag, Berlin

    MATH  Google Scholar 

  • Vukobratović M, Borovac B, Potkonjak V (2007) Towards a unified understanding of basic notions and terms in humanoid robotics. Robotica 25:87–101

    Google Scholar 

  • Wang CYE, Bobrow JE, Reinkensmeyer DJ (2005) Dynamic motion planning for the design of robotic gait rehabilitation. J Biomech Eng-Trans ASME 127(4):672–679

    Google Scholar 

  • Wang Q, Xiang Y, Arora JS, Abdel-Malek K (2007) Alternative formulations for optimization-based human gait planning. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, Honolulu, Hawaii

  • Westervelt ER, Grizzle JW, Koditschek DE (2003) Hybrid zero dynamics of planar biped walkers. IEEE Trans Autom Control 48(1):42–56

    MathSciNet  Google Scholar 

  • Winter DA (1991) The biomechanics and motor control of human gait: normal, elderly and pathological. University of Waterloo Press

  • Xiang Y (2008) Optimization-based dynamic human walking prediction. PhD thesis, The University of Iowa, Iowa City, IA, USA

  • Xiang Y, Arora JS, Abdel-Malek K (2009a) Optimization-based motion prediction of mechanical systems: sensitivity analysis. Struct Multidisc Optim 37(6):595–608

    MathSciNet  Google Scholar 

  • Xiang Y, Arora JS, Rahmatalla S, Abdel-Malek K (2009b) Optimization-based dynamic human walking prediction: one step formulation. Int J Numer Methods Eng 79(6):667–695

    MATH  Google Scholar 

  • Xiang Y, Chung HJ, Kim JH, Bhatt R, Rahmatalla S, Yang J, Marler T, Arora JS, Abdel-Malek K. (2010a) Predictive dynamics: an optimization-based novel approach for human motion simulation. Struct Multidisc Optim. doi:10.1007/s00158-009-0423-z

    MathSciNet  Google Scholar 

  • Xiang Y, Arora JS, Rahmatalla S, Marler T, Bhatt R, Abdel-Malek K (2010b) Human lifting simulation using a multi-objective optimization approach. Multibody Syst Dyn. doi:10.1007/s11044-009-9186-y

    MathSciNet  Google Scholar 

  • Yamaguchi GT, Zajac FE (1990) Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation—a computer-simulation study. IEEE Trans Biomed Eng 37(9):886–902

    Google Scholar 

  • Yamaguchi J, Takanishi A, Kato I (1993) Development of a biped walking robot compensating for three-axis moment by trunk motion. In: Proceedings of the 1993 IEEE/RSJ international conference on intelligent robots and systems, Yokohama, Japan, pp 561–566

  • Yamaguchi GT, Moran DW, Si J (1995) A computationally efficient method for solving the redundant problem in biomechanics. J Biomech 28:999–1005

    Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411

    Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2002) Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16(3):215–232

    Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2003) Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. Gait Posture 17(1):1–17

    Google Scholar 

  • Zheng YF, Shen J (1990) Gait Synthesis for the Sd-2 Biped Robot to Climb Sloping Surface. IEEE Trans Robot Autom 6(1):86–96

    Google Scholar 

  • Zheng YF, Sias FR (1988) Design and motion control of practical biped robots. Int J Robot Autom 3(2):70–77

    Google Scholar 

Download references

Acknowledgments

This research was supported by projects from US Army TACOM, Soldier Systems Center (Natick), and Caterpillar Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasbir S. Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Y., Arora, J.S. & Abdel-Malek, K. Physics-based modeling and simulation of human walking: a review of optimization-based and other approaches. Struct Multidisc Optim 42, 1–23 (2010). https://doi.org/10.1007/s00158-010-0496-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0496-8

Keywords