Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multiobjective and multi-physics topology optimization using an updated smart normal constraint bi-directional evolutionary structural optimization method

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

To date the design of structures using topology optimization methods has mainly focused on single-objective problems. Since real-world design problems typically involve several different objectives, most of which counteract each other, it is desirable to present the designer with a set of Pareto optimal solutions that capture the trade-off between these objectives, known as a smart Pareto set. Thus far only the weighted sums and global criterion methods have been incorporated into topology optimization problems. Such methods are unable to produce evenly distributed smart Pareto sets. However, recently the smart normal constraint method has been shown to be capable of directly generating smart Pareto sets. Therefore, in the present work, an updated smart Normal Constraint Method is combined with a Bi-directional Evolutionary Structural Optimization (SNC-BESO) algorithm to produce smart Pareto sets for multiobjective topology optimization problems. Two examples are presented, showing that the Pareto solutions found by the SNC-BESO method make up a smart Pareto set. The first example, taken from the literature, shows the benefits of the SNC-BESO method. The second example is an industrial design problem for a micro fluidic mixer. Thus, the problem is multi-physics as well as multiobjective, highlighting the applicability of such methods to real-world problems. The results indicate that the method is capable of producing smart Pareto sets to industrial problems in an effective and efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abrahamson S, Lonnes S (1995) Uncertainty in calculating vorticity from 2D velocity fields using circulation and least-squares approach. Exp Fluids 20:10–20

    Article  Google Scholar 

  • Athan TW, Papalambros PY (1996) A note on weighted criteria methods for compromise solutions in multi-objective optimization. Eng Optim 27:155–176

    Article  Google Scholar 

  • Barber CB, Dobkin DP, Huhdanpaa HT (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22:469–483

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Method Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  • Bendsoe MP, Sigmund O (2004) Topology optimization: theory methods and applications, 2nd edn. Springer, Berlin, Heidelberg, New York

    Book  MATH  Google Scholar 

  • Boyce NO, Mattson CA (2008) Reducing computational time of the normal constraints method by eliminating redundant optimization runs. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. AIAA

  • Chen W, Wiecek MM, Zhang J (1999) Quality utility - a compromise programming approach to robust design. J Mech Des 121:179–187

    Article  Google Scholar 

  • Chen W, Sahai A, Messac A, Sundararaj G (2000) Exploration of the effectiveness of physical programming in robust design. J Mech Des 122:155–163

    Article  Google Scholar 

  • Chu D, Xie Y M, Hira A, Steven GP (1996) Evolutionary structural optimization for problems with stiffness constraints. Finite Elem Anal Des 21:239–251

    Article  MATH  Google Scholar 

  • Coello CAC, Lamont GB, Veldhuizen DAV (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Das I (1999) An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection. University of Buffalo, Center for Advanced Design, Buffalo

    Google Scholar 

  • Das I, Dennis JE (1997) A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Struct Optim 14:63–69

    Article  Google Scholar 

  • Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8:631–657

    Article  MathSciNet  MATH  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38

    Article  MathSciNet  Google Scholar 

  • Deb K (2009) Multi-objective optimization using evolutionary algorithms, 1st edn. Wiley, New York

    MATH  Google Scholar 

  • Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34:91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Haddock ND, Mattson CA, Knight DC (2008) Exploring direct generation of smart Pareto sets. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. AIAA

  • Hancock BJ, Mattson CA (2013) The smart normal constraints method for directly generating a smart Pareto set. Struct Multidiscip Optim 48:763–775

    Article  Google Scholar 

  • Huang HZ, Gu YK, Du X (2006) An interactive fuzzy multi-objective optimization method for engineering design. Eng Appl Artif Intel 19:451–460

    Article  Google Scholar 

  • Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049

    Article  Google Scholar 

  • Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43:393–401

    Article  MathSciNet  MATH  Google Scholar 

  • Huang X, Xie YM (2010) Evolutionary topology optimization of continuum structures, 1st edn. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88:357–364

    Article  Google Scholar 

  • Ismail-Yahaya A, Messac A (2002) Effective generation of the Pareto frontier using the normal constraint method. In: 40th AIAA aerospace sciences meeting & exhibit. AIAA

  • Jaeggi DM, Parks GT, Kipouros T, Clarkson PJ (2008) The development of a multi-objective Tabu search algorithm for continuous optimisation problems. Eur J Oper Res 185:1192–1212

    Article  MathSciNet  MATH  Google Scholar 

  • Kasumba H, Kunisch K (2012) Vortex control in channel flows using translation invariant cost functionals. Comput Optim Appl 52:691–717

    Article  MathSciNet  MATH  Google Scholar 

  • Kim WY, Grandhi RV, Haney M (2006) Multiobjective evolutionary structural optimization using combined static/dynamic control parameters. AIAA J 44:794–802

    Article  Google Scholar 

  • Koski J (1985) Defectiveness of weighting method in multicriterion optimization of structures. Commun Appl Numer Methods 1:333–337

    Article  MATH  Google Scholar 

  • Kunakote T, Bureerat S (2011) Multi-objective topology optimization using evolutionary algorithms. Eng Optim 43:541–557

    Article  MathSciNet  Google Scholar 

  • Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26:369– 395

    Article  MathSciNet  MATH  Google Scholar 

  • Marler RT, Arora JS (2010) The weighted sum method for multi-objective optimization: new insights. Struct Multidiscip Optim 41:853–862

    Article  MathSciNet  MATH  Google Scholar 

  • Martinez JSM, Blasco X, Salceo JV (2009a) A new perspective on multiobjective optimization by enhanced normalized normal constraint method. Struct Multidiscip Optim 36:537–546

  • Martinez M, Sanchis J, Blasco X (2007) Global and well-distributed Pareto frontier by modifying normal normalized constraint methods for bicriterion problems. Struct Multidiscip Optim 34:197–209

    Article  MathSciNet  MATH  Google Scholar 

  • Martinez M, Garcia-Nieto S, Sanchis J, Blasco X (2009b) Genetic algorithms optimization for normalized normal constraint method under Pareto construction. Adv Eng Softw 40:260–267

  • Martinez MP, Messac A, Rais-Rohani M (2001) Manufacturability-based optimization of aircraft structures using physical programming. AIAA J 39:517–525

    Article  Google Scholar 

  • Mattson CA, Mullur AA, Messac A (2004) Smart Pareto filter: Obtaining a minimal representation of multiobjective design space. Eng Optim 36:721–740

    Article  MathSciNet  Google Scholar 

  • Messac A (2000) From dubious construction of objective functions to the application of physical programming. AIAA J 38:155–163

    Article  Google Scholar 

  • Messac A, Hattis P (1996) Physical programming design optimization for high speed civil transport (HSCT). J Aircraft 33:446–449

    Article  Google Scholar 

  • Messac A, Ismail-Yahaya A (2001) Required relationship between objective function and Pareto frontier orders: practical implications. AIAA J 11:2168–2174

    Article  Google Scholar 

  • Messac A, Mattson CA (2002) Generating well-distributed sets of Pareto points for engineering design using physical programming. Optim Eng 3:431–450

    Article  MATH  Google Scholar 

  • Messac A, Mattson CA (2004) Normal constraints method with guarantee of even representation of complete Pareto frontier. AIAA J 42:2101–2111

    Article  Google Scholar 

  • Messac A, Sukam CP, Melachrinoudis E (2000a) Aggregate objective functions and Pareto frontiers: required relationships and practical implications. Optim Eng 1:171–188

  • Messac A, Sundararaj GJ, Tappeta RV, Renaud JE (2000b) Ability of objective functions to generate points on nonconvex Pareto frontiers. AIAA J 38:1084–1091

  • Messac A, Puemi-Sukam C, Melachrinoudis E (2001) Mathematical and pragmatic perspectives of physical programming. AIAA J 39:885–893

    Article  MATH  Google Scholar 

  • Messac A, Ismail-Yahaya A, Mattson CA (2003) The normalized normal constraint method for generating the Pareto frontier. Struct Multidiscip Optim 25:86–98

    Article  MathSciNet  MATH  Google Scholar 

  • Messac A, Dessel SV, Mullur S, Maria AA (2004) Optimization of large scale rigidified inflatable structures for housing using physical programming. Struct Multidiscip Optim 26:139–151

    Article  Google Scholar 

  • Michell AGM (1904) The limits of economy of material in frame structures. Philos Mag 8:589–597

    Article  MATH  Google Scholar 

  • Moghtaderi B, Shames I, Djenidi L (2006) Microfluidic characteristics of a multi-holed baffle plate micro-reactor. Int J Heat Fluid Fl 127:1069–1077

    Article  Google Scholar 

  • Motta RS, Afonso SMB, Lyra PRM (2012) A modified NBI and NC method for the solution of n-multiobjective optimization problems. Struct Multidiscip Optim 46:239–259

    Article  MathSciNet  MATH  Google Scholar 

  • Munk D, Vio G, Kipouros T, Parks G (2016a) Computational design for micro fluidic devices using a tightly coupled Lattice Boltzmann and level set-based optimization algorithm. In: Proceedings of the 11th ASMO UK/ISSMO conference on engineering design optimization. ASMO, UK

  • Munk DJ, Vio GA, Steven GP (2015) Topology and shape optimization methods using evolutionary algorithms: a review. Struct Multidiscip Optim 52(3):613–631

    Article  MathSciNet  Google Scholar 

  • Munk DJ, Kipouros T, Vio GA, Parks GT, Steven GP (2016b) Topology optimization of micro fluidic mixers considering fluid-structure interactions with a coupled Lattice Boltzmann method. J Comput Phys Under review

  • Munk DJ, Vio GA, Steven GP (2017) A bi-directional evolutionary structural optimization algorithm with an added connectivity constraint. Finite Elem Anal Des 131:25–42

    Article  Google Scholar 

  • Pareto V (1964) Cour deconomie politique (the first edition in 1896) edn. Librarie Droz-Geneve, Geneva

    Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20:2–11

    Article  Google Scholar 

  • Prager W, Rozvany GIN (1977) Optimization of the structural geometry. In: Bednarek A, Cesari L (eds) Dynamical systems. Academic Press, pp 265–293

  • Proos KA, Steven GP, Querin OM, Xie YM (2001a) Multicriterion evolutionary structural optimization using the weighting and the global criterion methods. AIAA J 39(10):2006–2012

  • Proos KA, Steven GP, Querin OM, Xie YM (2001b) Stiffness and inertia multicriteria evolutionary structural optimization. Eng Comput 18:1031–1054

  • Ray T, Tai K, Seow KC (2001) An evolutionary algorithm for multiobjective optimization. Eng Optim 33:399–424

    Article  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217–237

    Article  MathSciNet  MATH  Google Scholar 

  • Rozvany GIN, Lewinski T (eds) (2013) Topology optimization in structural and continuum mechanics, 1st edn. Springer, Dordrecht

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254

    Article  Google Scholar 

  • Ruzika S, Wiecek MM (2005) Approximation methods in multiobjective programming. J Optimiz Theory App 126:473–501

    Article  MathSciNet  MATH  Google Scholar 

  • Rynne B (2007) Linear functional analysis, 1st edn. Springer, New York

    Google Scholar 

  • Sigmund O (2001) Design of multiphysics actuators using topology optimization – Part I: One-material structures. Comput Method Appl Mech Eng 190:6577–6604

    Article  MATH  Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43:589–596

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48:1031–1055

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75

    Article  Google Scholar 

  • Stadler W (1995) Caveats and boons of multicriteria optimization. Comput-Aided Civ Infrastruct Eng 10:291–299

    Article  Google Scholar 

  • Steven GP, Li Q, Xie YM (2000) Evolutionary topology and shape design for generating physical field problems. Comput Mech 26(2):129–139

    Article  MATH  Google Scholar 

  • Tanaka M, Watanabe H, Furukawa Y, Tanino T (1995) GA-based decision support system for multicriteria optimization. In: 1995 IEEE international conference on systems, man, and cybernetics, vol 2. IEEE, pp 1556–1561

  • Tsotskas C, Kipouros T, Savill M (2015) Fast multi-objective optimisation of a micro-fluidic device by using graphics accelerators. Proc Comput Sci 51:2237–2246

    Article  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896

    Article  Google Scholar 

  • Yang XY, Xie YM, Steven GP, Querin OM (1999) Bidirectional evolutionary method for stiffness optimization. AIAA J 37:1483–1488

    Article  Google Scholar 

  • Zadeh LA (1963) Optimality and non-scalar-valued performance criteria. IEEE Trans Automat Contr 8:59–60

    Article  Google Scholar 

  • Zhou A, Qu BO, Li H, Zhoa SZ, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1:32–49

    Article  Google Scholar 

  • Zuo Z, Xie YM, Huang X (2010) An improved bi-directional evolutionary topology optimization method for frequencies. Int J Struct Stab Dynam 10:55–75

    Article  MathSciNet  MATH  Google Scholar 

  • Zuo Z, Xie YM, Huang X (2012) Evolutionary topology optimization of structures with multiple displacements and frequency constraints. Adv Struct Eng 15:385–398

    Article  Google Scholar 

Download references

Acknowledgements

D.J. Munk thanks the Australian government for their financial support through the Endeavour Fellowship scheme.

The authors would like to thank Dr Tiziano Ghisu for producing the data displayed in Fig. 14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Munk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munk, D.J., Kipouros, T., Vio, G.A. et al. Multiobjective and multi-physics topology optimization using an updated smart normal constraint bi-directional evolutionary structural optimization method. Struct Multidisc Optim 57, 665–688 (2018). https://doi.org/10.1007/s00158-017-1781-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1781-6

Keywords