Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Application of Bayesian networks for diagnostics in the assembly process by considering small measurement data sets

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The ability of variation source diagnosis in the auto body assembly process plays an essential role in the success of the manufacturing enterprises. However, it is more challenging to identify the process faults associated with the compliant sheet metal parts based on small measurement data sets. A new Bayesian networks (BN) modeling approach under the condition of small data sets is proposed. The main causal links are identified based on mapping of the variation sensitivity matrix. The interaction effects are detected according to the conditional mutual information tests. After the network structure is determined, the Bayesian approach is used to obtain the conditional probability tables by incorporating prior probability distributions. The evaluation of diagnostic performance concerning evidence number and log-odds noise levels is also presented. A real bracket assembly case was used to illustrate the whole procedures for fixture fault diagnosis. The examined test cases demonstrate the proposed BN approach is practical and effective, even when incomplete evidences are observed and a medium-level noise is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ceglarek D, Shi J (1996) Fixture failure diagnosis for auto body assembly using pattern recognition. J Manuf Sci Eng 118(1):55–66. doi:10.1115/1.2803648

    Google Scholar 

  2. Rong Q, Ceglarek D, Shi J (2000) Dimensional fault diagnosis for compliant beam structure assemblies. J Manuf Sci Eng 122(3):773–780. doi:10.1115/1.1285917

    Article  Google Scholar 

  3. Liu YG, Hu SJ (2005) Assembly fixture fault diagnosis using designated component analysis. J Manuf Sci Eng 127(2):358–368. doi:10.1115/1.1852572

    Article  Google Scholar 

  4. Jin J, Shi J (1999) State space modeling of sheet metal assembly for dimensional control. J Manuf Sci Eng 121(4):756–762. doi:10.1115/1.2833137

    Article  Google Scholar 

  5. Tian Z, Lai X, Lin Z (2009) Robust fixture layout design for multi-station sheet metal assembly processes using a genetic algorithm. Int J Prod Res 47(21):6159–6176. doi:10.1080/00207540802178091

    Article  Google Scholar 

  6. Liu SC, Hu SJ (1997) Variation simulation for deformable sheet metal assemblies using finite element methods. J Manuf Sci Eng 119(3):368–374. doi:10.1115/1.2831115

    Article  Google Scholar 

  7. Camelio JA, Hu SJ, Yim H (2005) Sensor placement for effective diagnosis of multiple faults in fixturing of compliant parts. J Manuf Sci Eng 127(1):68–74. doi:10.1115/1.1828056

    Article  Google Scholar 

  8. Franciosa P, Gerbino S, Patalano S (2011) Simulation of variational compliant assemblies with shape errors based on morphing mesh approach. Int J Adv Manuf Technol 53(1–4):47–61. doi:10.1007/s00170-010-2839-4

    Article  Google Scholar 

  9. Niaki STA, Nezhad MSF (2009) Decision-making in detecting and diagnosing faults of multivariate statistical quality control systems. Int J Adv Manuf Technol 42(7–8):713–724. doi:10.1007/s00170-008-1636-9

    Article  Google Scholar 

  10. Rahim MA, Khalid HM, Akram M (2011) Quality monitoring of a closed-loop system with parametric uncertainties and external disturbances: a fault detection and isolation approach. Int J Adv Manuf Technol 55(1–4):293–306. doi:10.1007/s00170-010-3043-2

    Article  Google Scholar 

  11. Qin Y, Zhao Y, Yao Y, Xu D (2011) Multistage machining processes variation propagation analysis based on machining processes weighted network performance. Int J Adv Manuf Technol 55(5–8):487–499. doi:10.1007/s00170-010-3113-5

    Article  Google Scholar 

  12. Wolbrecht E, Ambrosio BD, Paach B (2000) Monitoring and diagnosis of a multi-stage manufacturing process using Bayesian networks. AI EDAM 14(1):53–67. doi:10.1017/S0890060400141058

    Google Scholar 

  13. Dey S, Stori JA (2005) A Bayesian network approach to root cause diagnosis of process variations. Int J Mach Tool Manu 45(1):75–91. doi:10.1016/j.ijmachtools.2004.06018

    Article  Google Scholar 

  14. Romessis C, Mathioudakis K (2006) Bayesian network approach for gas path fault diagnosis. J Eng Gas Turbines Power 128(1):64–72. doi:10.1115/GT2004-53801

    Article  Google Scholar 

  15. Liu Y, Jin S, Lin Z, Zheng C, Yu K (2011) Optimal sensor placement for fixture fault diagnosis using Bayesian network. Assem Autom 31(2):176–181. doi:10.1108/01445151111117764

    Article  Google Scholar 

  16. Heckerman D (2008) A tutorial on learning with Bayesian networks. Stud Comput Intel 156:33–82. doi:10.1007/978-3-540-85066-3_3

    Article  Google Scholar 

  17. Cheng J, Greiner R, Kelly J, Bell D, Liu W (2002) Learning Bayesian networks from data: an information-theory based approach. Artif Intell 137(1–2):43–90. doi:10.1016/S0004-3702(02)00191-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Jin, S. Application of Bayesian networks for diagnostics in the assembly process by considering small measurement data sets. Int J Adv Manuf Technol 65, 1229–1237 (2013). https://doi.org/10.1007/s00170-012-4252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-012-4252-7

Keywords