Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A new method for on-line monitoring discharge pulse in WEDM-MS process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This paper presents a new method for on-line monitoring discharge pulse in wire electrical discharge machining-middle speed (WEDM-MS) process based on digital image processing and machine learning. Discharge pulse monitoring is a key aspect of the WEDM-MS control system, as it directly guides the direction and the speed of the machining. In the proposed system, the discharge pulse is captured using a high-bandwidth oscilloscope because the shortest period of discharge is less than 40 ms. The proposed system workflow consists of image reconstruction, pre-processing, feature extraction, and pulse classification. Wavelet moment analysis (WMA), Hu moment analysis (HMA), fractal dimension analysis (FDA), local geometric characteristics (LGC), and global geometric characteristics (GGC) are all applied in the image pre-processing to extract waveform image features and reduce image dimension. These features are then used in a two-stage classification technique that employs support vector machine (SVM) and random forests (RF) for pulse classification and identification. The first stage method, which uses SVM, discriminates between open circuit, short circuit, and mixed status pulses, while the second stage method, which uses RF, divides the mixed status pulse into spark, transition arc, and arc pulse. In test experiments conducted under different electrical parameters and with different materials, the WEDM-MS discharge pulse monitoring systems were successfully employed with an accuracy of 93.13 %. The proposed SVM-RF approach outperforms learning vector quantization (LVQ) neural network, SVM, or RF discharge pulse WEDM discrimination methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lin YC, Wang AC, Wang DA, Chen CC (2009) Machining performance and optimizing machining parameters of al2o3Ctic ceramics using EDM based on the Taguchi method. Mater Manuf Processes 24(6):667–674

    Article  MathSciNet  Google Scholar 

  2. Sarkar S, Ghosh K, Mitra S, Bhattacharyya B (2010) An integrated approach to optimization of wedm combining single-pass and multipass cutting operation. Mater Manuf Processes 25(8):799–807

    Article  Google Scholar 

  3. Mehdi H, Saeed F, Ahmed ADS, Mohd YN (2015) Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int J Adv Manuf Technol 77:831–838

    Article  Google Scholar 

  4. Sanchez HT, Estrems M, Faura F (2011) Development of an inversion model for establishing EDM input parameters to satisfy material removal rate, electrode wear ratio and surface roughness. Int J Adv Manuf Technol 57(1-4):189–201

    Article  Google Scholar 

  5. Dauw DF, Snoeys R, Dekeyser W (1983) Advanced pulse discriminating system for EDM process analysis and control. CIRP Annals-Manuf Technol 32(2):541–549

    Article  Google Scholar 

  6. Rajurkar KP, Wang WM, Lindsay RP (1989) A new model reference adaptive control of EDM. CIRP Annals-Manuf Technol 38(1):183–186

    Article  Google Scholar 

  7. Bhattacharyya SK, El-Menshawy MF (1978) Monitoring the EDM process by radio signals. Int J Prod Res 16(5):353–363

    Article  Google Scholar 

  8. Liao YS, Chang TY, Chuang TJ (2008) An on-line monitoring system for a micro electrical discharge machining (micro-EDM) process. J Micromech Microeng 18(3):035009

    Article  Google Scholar 

  9. Yeo SH, Aligiri E, Tan PC, Zarepour H (2009) A new pulse discriminating system for micro-EDM. Mater Manuf Processes 24(12):1297–1305

    Article  Google Scholar 

  10. Tarng YS, Tseng CM, Chung LK (1997) A fuzzy pulse discriminating system for electrical discharge machining. Int J Mach Tool Manu 37(4):511–522

    Article  Google Scholar 

  11. Kao JY, Tarng YS (1997) A neutral-network approach for the on-line monitoring of the electrical discharge machining process. J Mater Process Technol 69(1):112–119

    Article  Google Scholar 

  12. Jiang Y, Zhao W, Xi X, Gu L, Kang X (2012) Detecting discharge status of small-hole EDM based on wavelet transform. Int J Adv Manuf Technol 61(1-4):171–183

    Article  Google Scholar 

  13. Yu SF, Lee BY, Lin WS (2001) Waveform monitoring of electric discharge machining by wavelet transform. Int J Adv Manuf Technol 17(5):339–343

    Article  Google Scholar 

  14. Jia Z, Zheng X, Wang F, Liu W, Zhou M (2011) A progressive mapping method for classifying the discharging states in micro-electrical discharge machining. Int J Adv Manuf Technol 56(1-4):197–204

    Article  Google Scholar 

  15. Wang XY, Niu PP, My Lu (2011) A robust digital audio watermarking scheme using wavelet moment invariance. J Syst Software 84(8):1408–1421

    Article  Google Scholar 

  16. Dogantekin E, Yilmaz M, Dogantekin A, Avci E, Sengur A (2008) A robust technique based on invariant moments Canfis for recognition of human parasite eggs in microscopic images. Expert Syst Appl 35 (3):728–738

    Article  Google Scholar 

  17. Miras J, Navas J, Villoslada P, Esteban FJ Uja-3dfd: A program to compute the 3D fractal dimension from MRI data. Comput Meth Prog Bio 104(3):452–460

  18. Sun J, Rahman M, Wong YS, Hong GS (2004) Multiclassification of tool wear with support vector machine by manufacturing loss consideration. Int J Mach Tool Manu 44(11):1179–1187

    Article  Google Scholar 

  19. Zhou Q, Zhou H, Zhou Q, Yang F, Li Luo (2014) Structure damage detection based on random forest recursive feature elimination. Mech Syst Signal Pr 46(1):82–90

    Article  MathSciNet  Google Scholar 

  20. Zhang G, Luo Z, Fu B, Li B, Liao J, Fan X, Xi Z (2010) A symmetry and bi-recursive algorithm of accurately computing krawtchouk moments. Pattern Recogn Lett 31(7):548–554

    Article  Google Scholar 

  21. Hu MK (1962) Visual pattern recognition by moment invariants. IEEE T Inform Theory 8(2):179–187

    Article  MATH  Google Scholar 

  22. Mandelbrot B (1990) Fractals: a geometry of nature: fractal goemetry is the key to understanding chaos. it is also the geometry of mountains, clouds and galaxies. New Sci 127(1734):38–43

    Google Scholar 

  23. Walsh JJ, Watterson J (1993) Fractal analysis of fracture patterns using the standard box-counting technique: valid and invalid methodologies. J Struct Geol 15(12):1509–1512

    Article  Google Scholar 

  24. Cortes C, Vapnik V (1995) Support-vector networks. Mach learn 20(3):273–297

    MATH  Google Scholar 

  25. Vapnik VN, Vapnik V (1998) Statistical learning theory, vol 2. Wiley, New York

    Google Scholar 

  26. Sun A, Lim EP, Liu Y (2009) On strategies for imbalanced text classification using SVM: a comparative study. Decis Support Syst 48(1):191–201

    Article  Google Scholar 

  27. Lingras P, Butz C (2005) Interval set representations of 1-v-r support vector machine multi-classifiers. IEEE Int Conf Granul Comput 1:193–198

    Google Scholar 

  28. Lingras P, Butz C (2007) Rough set based 1-v-1 and 1-vr approaches to support vector machine multiclassification. Inform Sciences 177(18):3782–3798

    Article  Google Scholar 

  29. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  30. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal 20 (8):832–844

    Article  Google Scholar 

  31. Liaw A, Wiener M (2002) Classification and regression by randomforest. R News 2(3):18–22

    Google Scholar 

  32. Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26(1):217–222

    Article  Google Scholar 

  33. Lin CJ (2013) http://www.csie.ntu.edu.tw/cjlin/libsvm

  34. Abhishek J https://code.google.com/p/randomforestmatlab

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ming, W., Zhang, G. et al. A new method for on-line monitoring discharge pulse in WEDM-MS process. Int J Adv Manuf Technol 81, 1403–1418 (2015). https://doi.org/10.1007/s00170-015-7261-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7261-5

Keywords