Abstract
An evaluating method for the laser weld quality of a stainless steel lap joint is studied herein, based on an ultrasonic testing simulation and an experimental study. A laser weld model is established for the simulation focusing on the analysis of the transient distribution of the acoustic waves and the A-scan signal during the ultrasonic test process. According to the simulation and the experimental study on the scanning process, particularly the scanning direction vertical to the weld, the weld centre is confirmed by the characteristic of the first echo from the bottom of the upper sheet, where an echo amplitude increase occurs. A mathematical model calculating the welding pool width is established based on the position of the weld centre. The results show that the mathematical model has a higher accuracy when the probe is located on the weld centre. The error of the mathematical model is within 0.05 mm, and the accuracy can completely meet the engineering application requirements.
Similar content being viewed by others
References
Li YA, Li YF, Wang QL, Xu D, Tan M (2010) Measurement and defect detection of the weld bead based on online vision inspection. IEEE T Instrum Meas 59(7):1841–1849. doi:10.1109/TIM.2009.2028222
Shao J, Yan Y (2005) Review of techniques for on-line monitoring and inspection of laser welding. J Phys Conf Series 15:101–107. doi:10.1088/1742-6596/15/1/017
Cao X, Jahazi M, Immarigeon JP, Wallace W (2006) A review of laser welding techniques for magnesium alloys. J Mater Process Tech 171(2):188–204. doi:10.1016/j.jmatprotec.2005.06.068
Lacki P, Adamus K (2011) Numerical simulation of the electron beam welding process. Comput Struct 89(11):977–985. doi:10.1016/j.compstruc.2011.01.016
Ai YW, Shao XY, Jiang P, Li PG, Liu Y, Yue C (2015) Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials. Appl Phys A Mater 121(2):555–569. doi:10.1007/s00339-015-9408-5
Ao SS, Zhen L, Feng MN, Yan FY (2015) Simulation and experimental analysis of acoustic signal characteristics in laser welding. Int J Adv Manuf Technol 81(1):277–287. doi:10.1007/s00170-015-7164-5
Jeng JY, Mau TF, Leu SM (2000) Gap inspection and alignment using a vision technique for laser butt joint welding. Int J Adv Manuf Technol 16(3):212–216. doi:10.1007/s001700050029
Sathiya P, Panneerselvam K, Jaleel MYA (2012) Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm. Mater Design 36:490–498. doi:10.1016/j.matdes.2011.11.028
Chen ZQ, Gao XD (2014) Detection of weld pool width using infrared imaging during high-power fiber laser welding of type 304 austenitic stainless steel. Int J Adv Manuf Technol 74(9):1247–1254. doi:10.1007/s00170-014-6081-3
Fabbro R, Slimani S, Coste F, Briand F (2005) Study of keyhole behaviour for full penetration Nd-Yag CW laser welding. J Phys D Appl Phys 38(12):1881–1887. doi:10.1088/0022-3727/38/12/005
Kuo TY, Lin HC (2006) Effects of pulse level of Nd-YAG laser on tensile properties and formability of laser weldments in automotive aluminum alloys. Mat Sci Eng A-Struct 416(1):281–289. doi:10.1016/j.msea.2005.10.041
Sudnik W, Radaj D, Breitschwerdt S, Erofeew W (2000) Numerical simulation of weld pool geometry in laser beam welding. J Phys D Appl Phys 33(6):662–671. doi:10.1088/0022-3727/33/6/312
Ditchburn RJ, Burke SK, Scala CM (1996) NDT of welds: state of the art. NDT&E Int 29(2):111–117. doi:10.1016/0963-8695(96)00010-2
Mansour TM (1988) Ultrasonic inspection of spot welds in thin-gauge steel. Mater Eval 46(5):650–658
Liu J, Xu GC, Gu XP, Zhou GH, Hao YK (2014) Ultrasonic C-scan detection for stainless steel spot welds based on signal analysis in frequency domain. ISIJ Int 54(8):1876–1882. doi:10.2355/isijinternational.54.1876
Chertov AM, Maev RG, Severin FM (2007) Acoustic microscopy of internal structure of resistance spot welds. IEEE T Ultrason Ferr 54(8):1521–1529. doi:10.1109/TUFFC.2007.422
Zhou GH, Xu GC, Gu XP, Liu J (2016) Research on evaluating laser welding quality based on two-dimensional array ultrasonic probe. Int J Adv Manuf Technol 84(5):1717–1723. doi:10.1007/s00170-015-8243-3
Chen ZH, Shi YW, Jiao BQ, Zhao HY (2009) Ultrasonic nondestructive evaluation of spot welds for zinc-coated high strength steel sheet based on wavelet packet analysis. J Mater Process Technol 209(5):2329–2337. doi:10.1016/j.jmatprotec.2008.05.030
Spinella DJ, Brockenbrough JR, Fridy JM (2005) Trends in aluminum resistance spot welding for the auto industry. Weld J 84(1):34–40
Mozurkewich G, Ghaffari B, Potter TJ (2008) Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing. Ultrasonics 48(5):343–350. doi:10.1016/j.ultras.2008.01.004
Song YK, Hua L, Wang XK, Wang B, Liu YL (2016) Research on the detection model and method for evaluating spot welding quality based on ultrasonic A-scan analysis. J Nondestruct Eval 35(1):1–12. doi:10.1007/s10921-015-0319-3
Nakahata K, Chang JJ, Takahashi M, Ohira K, Ogura Y (2014) Finite integration technique for coupled acoustic and elastic wave simulation and its application to noncontact ultrasonic testing. Acoust Sci Technol 35(5):260–268. doi:10.1250/ast.35.260
Delrue S, Van Den Abeele K, Blomme E, Deveugele J, Lust P, Matar OB (2010) Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing. Ultrasonics 50(2):188–196. doi:10.1016/j.ultras.2009.08.005
Baek E, Yim H (2011) Numerical modeling and simulation for ultrasonic inspection of anisotropic austenitic welds using the mass-spring lattice model. NDT&E Int 44(7):571–582. doi:10.1016/j.ndteint.2011.05.011
Taskin M, Caligulu U, Kolukisa S (2009) The effect of welding speed on the laser welding of AISI 430 ferritic stainless-AISI 1010 low-carbon steel. Prakt Metallogr-pr M 46(11):598–608. doi:10.3139/147.110025
Caligulu U, Dikbas H, Taskin M (2012) Microstructural characteristic of dissimilar welded components (AISI 430 ferritic-AISI 304 austenitic stainless steels) by CO2 laser beam welding (LBW). GU J Sci 25(1):35–51
Gu XP, Xu GC, Liu J, Gu XY (2013) Ultrasonic testing and evaluation of laser welds in stainless steel. Laser Eng 26(1):103–113
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, G., Xu, G., Gu, X. et al. Simulation and experimental study on the quality evaluation of laser welds based on ultrasonic test. Int J Adv Manuf Technol 93, 3897–3906 (2017). https://doi.org/10.1007/s00170-017-0816-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00170-017-0816-x