Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Simulation and experimental study on the quality evaluation of laser welds based on ultrasonic test

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

An evaluating method for the laser weld quality of a stainless steel lap joint is studied herein, based on an ultrasonic testing simulation and an experimental study. A laser weld model is established for the simulation focusing on the analysis of the transient distribution of the acoustic waves and the A-scan signal during the ultrasonic test process. According to the simulation and the experimental study on the scanning process, particularly the scanning direction vertical to the weld, the weld centre is confirmed by the characteristic of the first echo from the bottom of the upper sheet, where an echo amplitude increase occurs. A mathematical model calculating the welding pool width is established based on the position of the weld centre. The results show that the mathematical model has a higher accuracy when the probe is located on the weld centre. The error of the mathematical model is within 0.05 mm, and the accuracy can completely meet the engineering application requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li YA, Li YF, Wang QL, Xu D, Tan M (2010) Measurement and defect detection of the weld bead based on online vision inspection. IEEE T Instrum Meas 59(7):1841–1849. doi:10.1109/TIM.2009.2028222

    Article  Google Scholar 

  2. Shao J, Yan Y (2005) Review of techniques for on-line monitoring and inspection of laser welding. J Phys Conf Series 15:101–107. doi:10.1088/1742-6596/15/1/017

    Article  Google Scholar 

  3. Cao X, Jahazi M, Immarigeon JP, Wallace W (2006) A review of laser welding techniques for magnesium alloys. J Mater Process Tech 171(2):188–204. doi:10.1016/j.jmatprotec.2005.06.068

    Article  Google Scholar 

  4. Lacki P, Adamus K (2011) Numerical simulation of the electron beam welding process. Comput Struct 89(11):977–985. doi:10.1016/j.compstruc.2011.01.016

    Article  Google Scholar 

  5. Ai YW, Shao XY, Jiang P, Li PG, Liu Y, Yue C (2015) Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials. Appl Phys A Mater 121(2):555–569. doi:10.1007/s00339-015-9408-5

    Article  Google Scholar 

  6. Ao SS, Zhen L, Feng MN, Yan FY (2015) Simulation and experimental analysis of acoustic signal characteristics in laser welding. Int J Adv Manuf Technol 81(1):277–287. doi:10.1007/s00170-015-7164-5

    Article  Google Scholar 

  7. Jeng JY, Mau TF, Leu SM (2000) Gap inspection and alignment using a vision technique for laser butt joint welding. Int J Adv Manuf Technol 16(3):212–216. doi:10.1007/s001700050029

    Article  Google Scholar 

  8. Sathiya P, Panneerselvam K, Jaleel MYA (2012) Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm. Mater Design 36:490–498. doi:10.1016/j.matdes.2011.11.028

    Article  Google Scholar 

  9. Chen ZQ, Gao XD (2014) Detection of weld pool width using infrared imaging during high-power fiber laser welding of type 304 austenitic stainless steel. Int J Adv Manuf Technol 74(9):1247–1254. doi:10.1007/s00170-014-6081-3

    Article  Google Scholar 

  10. Fabbro R, Slimani S, Coste F, Briand F (2005) Study of keyhole behaviour for full penetration Nd-Yag CW laser welding. J Phys D Appl Phys 38(12):1881–1887. doi:10.1088/0022-3727/38/12/005

    Article  Google Scholar 

  11. Kuo TY, Lin HC (2006) Effects of pulse level of Nd-YAG laser on tensile properties and formability of laser weldments in automotive aluminum alloys. Mat Sci Eng A-Struct 416(1):281–289. doi:10.1016/j.msea.2005.10.041

    Article  Google Scholar 

  12. Sudnik W, Radaj D, Breitschwerdt S, Erofeew W (2000) Numerical simulation of weld pool geometry in laser beam welding. J Phys D Appl Phys 33(6):662–671. doi:10.1088/0022-3727/33/6/312

    Article  Google Scholar 

  13. Ditchburn RJ, Burke SK, Scala CM (1996) NDT of welds: state of the art. NDT&E Int 29(2):111–117. doi:10.1016/0963-8695(96)00010-2

    Article  Google Scholar 

  14. Mansour TM (1988) Ultrasonic inspection of spot welds in thin-gauge steel. Mater Eval 46(5):650–658

    Google Scholar 

  15. Liu J, Xu GC, Gu XP, Zhou GH, Hao YK (2014) Ultrasonic C-scan detection for stainless steel spot welds based on signal analysis in frequency domain. ISIJ Int 54(8):1876–1882. doi:10.2355/isijinternational.54.1876

    Article  Google Scholar 

  16. Chertov AM, Maev RG, Severin FM (2007) Acoustic microscopy of internal structure of resistance spot welds. IEEE T Ultrason Ferr 54(8):1521–1529. doi:10.1109/TUFFC.2007.422

    Article  Google Scholar 

  17. Zhou GH, Xu GC, Gu XP, Liu J (2016) Research on evaluating laser welding quality based on two-dimensional array ultrasonic probe. Int J Adv Manuf Technol 84(5):1717–1723. doi:10.1007/s00170-015-8243-3

    Google Scholar 

  18. Chen ZH, Shi YW, Jiao BQ, Zhao HY (2009) Ultrasonic nondestructive evaluation of spot welds for zinc-coated high strength steel sheet based on wavelet packet analysis. J Mater Process Technol 209(5):2329–2337. doi:10.1016/j.jmatprotec.2008.05.030

    Article  Google Scholar 

  19. Spinella DJ, Brockenbrough JR, Fridy JM (2005) Trends in aluminum resistance spot welding for the auto industry. Weld J 84(1):34–40

    Google Scholar 

  20. Mozurkewich G, Ghaffari B, Potter TJ (2008) Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing. Ultrasonics 48(5):343–350. doi:10.1016/j.ultras.2008.01.004

    Article  Google Scholar 

  21. Song YK, Hua L, Wang XK, Wang B, Liu YL (2016) Research on the detection model and method for evaluating spot welding quality based on ultrasonic A-scan analysis. J Nondestruct Eval 35(1):1–12. doi:10.1007/s10921-015-0319-3

    Article  Google Scholar 

  22. Nakahata K, Chang JJ, Takahashi M, Ohira K, Ogura Y (2014) Finite integration technique for coupled acoustic and elastic wave simulation and its application to noncontact ultrasonic testing. Acoust Sci Technol 35(5):260–268. doi:10.1250/ast.35.260

    Article  Google Scholar 

  23. Delrue S, Van Den Abeele K, Blomme E, Deveugele J, Lust P, Matar OB (2010) Two-dimensional simulation of the single-sided air-coupled ultrasonic pitch-catch technique for non-destructive testing. Ultrasonics 50(2):188–196. doi:10.1016/j.ultras.2009.08.005

    Article  Google Scholar 

  24. Baek E, Yim H (2011) Numerical modeling and simulation for ultrasonic inspection of anisotropic austenitic welds using the mass-spring lattice model. NDT&E Int 44(7):571–582. doi:10.1016/j.ndteint.2011.05.011

    Article  Google Scholar 

  25. Taskin M, Caligulu U, Kolukisa S (2009) The effect of welding speed on the laser welding of AISI 430 ferritic stainless-AISI 1010 low-carbon steel. Prakt Metallogr-pr M 46(11):598–608. doi:10.3139/147.110025

    Article  Google Scholar 

  26. Caligulu U, Dikbas H, Taskin M (2012) Microstructural characteristic of dissimilar welded components (AISI 430 ferritic-AISI 304 austenitic stainless steels) by CO2 laser beam welding (LBW). GU J Sci 25(1):35–51

    Google Scholar 

  27. Gu XP, Xu GC, Liu J, Gu XY (2013) Ultrasonic testing and evaluation of laser welds in stainless steel. Laser Eng 26(1):103–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Xu, G., Gu, X. et al. Simulation and experimental study on the quality evaluation of laser welds based on ultrasonic test. Int J Adv Manuf Technol 93, 3897–3906 (2017). https://doi.org/10.1007/s00170-017-0816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0816-x

Keywords