Abstract
This paper critically assesses the recent trends in aluminum-magnesium dissimilar welding and suggests a key design guideline to successfully improve the weld joint quality through addition of interlayer. First, the paper describes the main issue of incompatibility between these metals and considers the root cause of the problem, i.e., the Al-Mg-based intermetallic compounds (IMCs). It then reviews the recent trends of interlayer addition in various welding processes to mitigate Al-Mg IMCs. Focusing on laser welding, the paper finally proposes a 3-step design guideline in Al-Mg dissimilar welding through addition of an interlayer and presents a case study of using pure Ni foil as a proof of concept. The design guideline has shown to be an effective means to predict and prevent the formation of deleterious intermetallics.
Similar content being viewed by others
References
Bergmann JP, Schuerer R, Ritter K (2013) Friction stir welding of tailored blanks of aluminum and magnesium alloys. Key Eng Mater 549:492–499. https://doi.org/10.4028/www.scientific.net/KEM.549.492
Shigematsu I, Kwon Y-J, Saito N (2009) Dissimilar friction stir welding for tailor-welded blanks of aluminum and magnesium alloys. Mater Trans 50:197–203. https://doi.org/10.2320/matertrans.MER2008326
Bhagwan AV, Kridli GT (2004) Formability improvement in aluminum tailor-welded blanks via material combinations. J Manuf Process 6:134–140
Tusek J, Kampus Z, Suban M (2001) Welding of tailored blanks of different materials. J Mater Process Technol 119:180–184
Kumar N, Yuan W, Mishra RS (2015) Friction stir welding of dissimilar alloys and materials. Butterworth-Heinemann, Oxford
Liu L, Ren D, Liu F (2014) A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Mater (Basel) 7:3735–3757. https://doi.org/10.3390/ma7053735
Baker H, Okamoto H (1995) Alloy phase diagrams, 9th edn. ASM International, Novelty
Kou S (2003) Welding metallurgy. Wiley, Hoboken
Borrisutthekul R, Miyashita Y, Mutoh Y (2005) Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-O. Sci Technol Adv Mater 6:199–204. https://doi.org/10.1016/j.stam.2004.11.014
Liu L, Liu X, Liu S (2006) Microstructure of laser-TIG hybrid welds of dissimilar Mg alloy and Al alloy with Ce as interlayer. Scr Mater 55:383–386. https://doi.org/10.1016/j.scriptamat.2006.04.025
Liu L, Wang H, Song G, Ye J (2007) Microstructure characteristics and mechanical properties of laser weld bonding of magnesium alloy to aluminum alloy. J Mater Sci 42:565–572. https://doi.org/10.1007/s10853-006-1068-6
Liu LM, Wang HY, Zhang ZD (2007) The analysis of laser weld bonding of Al alloy to Mg alloy. Scr Mater 56:473–476. https://doi.org/10.1016/j.scriptamat.2006.11.034
Wang H, Liu L, Zhu M, Wang H (2007) Laser weld bonding of A6061Al alloy to AZ31B Mg alloy. Sci Technol Weld Join 12:261–265. https://doi.org/10.1179/174329307X159784
Miyashita Y, Borrisutthekul R, Chen J, Mutoh Y (2007) Application of twin laser beam on AZ31-A5052 dissimilar metals welding. Key Eng Mater 353–358:1956–1959
Liu LM, Wang HY (2009) The effect of the adhesive on the microcracks in the laser welded bonding Mg to Al joint. Mater Sci Eng A 507:22–28. https://doi.org/10.1016/j.msea.2008.11.061
Chang WS, Rajesh SR, Chun CK, Kim HJ (2011) Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al alloy and AZ31 Mg alloy. J Mater Sci Technol 27:199–204. https://doi.org/10.1016/S1005-0302(11)60049-2
Wang HY, Liu LM, Jia ZY (2011) The influence of adhesive on the Al alloy in laser weld bonding Mg-Al process. J Mater Sci 46:5534–5540. https://doi.org/10.1007/s10853-011-5498-4
Liu L, Wang H (2011) Microstructure and properties analysis of laser welding and laser weld bonding Mg to Al joints. Metall Mater Trans A Phys Metall Mater Sci 42:1044–1050. https://doi.org/10.1007/s11661-010-0521-y
Qi X, Liu L (2012) Fusion welding of Fe-added lap joints between AZ31B magnesium alloy and 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique. Mater Des 33:436–443. https://doi.org/10.1016/j.matdes.2011.04.046
Scherm F, Bezold J, Glatzel U (2012) Laser welding of Mg alloy MgAl3Zn1 (AZ31) to Al alloy AlMg3 (AA5754) using ZnAl filler material. Sci Technol Weld Join 17:364–367. https://doi.org/10.1179/136217112X13333824902080
Gao M, Mei S, Li X, Zeng X (2012) Characterization and formation mechanism of laser-welded Mg and Al alloys using Ti interlayer. Scr Mater 67:193–196. https://doi.org/10.1016/j.scriptamat.2012.04.015
Wang H, Liu L, Liu F (2013) The characterization investigation of laser-arc-adhesive hybrid welding of Mg to Al joint using Ni interlayer. Mater Des 50:463–466. https://doi.org/10.1016/j.matdes.2013.02.085
Wang HY, Zhang ZD, Liu LM (2013) The effect of galvanized iron interlayer on the intermetallics in the laser weld bonding of Mg to Al fusion zone. J Mater Eng Perform 22:351–357. https://doi.org/10.1007/s11665-012-0260-x
Hajjari E, Divandari M, Razavi SH et al (2011) Dissimilar joining of Al Mg light metals by compound casting process. J Mater Sci 46:6491–6499
Yamamoto N, Liao J, Watanabe S, Nakata K (2009) Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy. Mater Trans 50:2833–2838. https://doi.org/10.2320/matertrans.M2009289
Zhang H, Dai X, Feng J (2014) Interfacial microstructure and mechanical properties of Al/Mg butt joints made by MIG welding process with Zn-Cd alloy as interlayer. J Wuhan Univ Technol Mater Sci Ed 29:1258–1264. https://doi.org/10.1007/s11595-014-1078-1
Morishige T, Kawaguchi A, Tsujikawa M et al (2008) Dissimilar welding of Al and Mg alloys by FSW. Mater Trans 49:1129–1131. https://doi.org/10.2320/matertrans.MC200768
Sato YS, Park SHC, Michiuchi M, Kokawa H (2004) Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scr Mater 50:1233–1236. https://doi.org/10.1016/j.scriptamat.2004.02.002
Penner P (2013) Resistance spot welding of Al to Mg with different interlayers. University of Waterloo
Sun M, Behravesh SB, Wu L et al (2016) Fatigue behavior of dissimilar Al 5052 and Mg AZ31 resistance spot welds with Sn-coated steel interlayer. Fatigue Fract Eng Mater Struct:1–11. https://doi.org/10.1111/ffe.12563
Chang W-S, Rajesh SR, Chun C-K, Kim H-J (2011) Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al alloy and AZ31 Mg alloy. J Mater Sci Technol 27:199–204. https://doi.org/10.1016/S1005-0302(11)60049-2
Dai X, Zhang H, Zhang H et al (2016) Arc assisted ultrasonic seam welding of Mg/Al joints with Zn interlayer. Mater Sci Technol 32:1–9. https://doi.org/10.1179/1743284715Y.0000000070
Hao X, Song G (2008) Spectral analysis of the plasma in low-power laser/arc hybrid welding of magnesium alloy. IEEE Trans Plasma Sci 37:76–82. https://doi.org/10.1109/TPS.2008.2005720
Patel VK, Bhole SD, Chen DL (2012) Improving weld strength of magnesium to aluminium dissimilar joints via tin interlayer during ultrasonic spot welding. Sci Technol Weld Join 17:342–347. https://doi.org/10.1179/1362171812Y.0000000013
Panteli A, Chen YC, Strong D et al (2012) Optimization of aluminium-to-magnesium ultrasonic spot welding. JOM 64:414–420. https://doi.org/10.1007/s11837-012-0268-6
Shang J, Wang K, Zhou Q et al (2012) Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals. Mater Des 34:559–565. https://doi.org/10.1016/j.matdes.2011.05.008
Penner P, Liu L, Gerlich A, Zhou Y (2013) Feasibility study of resistance spot welding of dissimilar Al/Mg combinations with Ni based interlayers. Sci Technol Weld Join 18:541–550. https://doi.org/10.1179/1362171813Y.0000000129
Liu F, Ren D, Liu L (2013) Effect of Al foils interlayer on microstructures and mechanical properties of Mg–Al butt joints welded by gas tungsten arc welding filling with Zn filler metal. Mater Des 46:419–425. https://doi.org/10.1016/j.matdes.2012.10.012
Panteli A, Robson JD, Chen YC, Prangnell PB (2013) The effectiveness of surface coatings on preventing interfacial reaction during ultrasonic welding of aluminum to magnesium. Metall Mater Trans A Phys Metall Mater Sci 44:5773–5781. https://doi.org/10.1007/s11661-013-1928-z
Zhang HT, Dai XY, Feng JC (2014) Joining of aluminum and magnesium via pre-roll-assisted A-TIG welding with Zn interlayer. Mater Lett 122:49–51. https://doi.org/10.1016/j.matlet.2014.02.008
Liu F, Wang H, Liu L (2014) Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal. Mater Charact 90:1–6. https://doi.org/10.1016/j.matchar.2014.01.010
Penner P, Liu L, Gerlich A, Zhou Y (2014) Dissimilar resistance spot welding of aluminum to magnesium with Zn-coated steel interlayers. Weld J 93:225s–231s
Zhang Y, Luo Z, Li Y et al (2015) Microstructure characterization and tensile properties of Mg/Al dissimilar joints manufactured by thermo-compensated resistance spot welding with Zn interlayer. Mater Des 75:166–173. https://doi.org/10.1016/j.matdes.2015.03.030
Sun M, Niknejad ST, Zhang G et al (2015) Microstructure and mechanical properties of resistance spot welded AZ31/AA5754 using a nickel interlayer. Mater Des 87:905–913. https://doi.org/10.1016/j.matdes.2015.08.097
Sun M, Niknejad ST, Gao H et al (2016) Mechanical properties of dissimilar resistance spot welds of aluminum to magnesium with Sn-coated steel interlayer. Mater Des 91:331–339. https://doi.org/10.1016/j.matdes.2015.11.121
Miedema AR, Chatel PF de (1979) A semiempirical approach to the heat of formation problem. Theory Alloy Phase Form: 344-389
Miedema AR, de Chatel PF, de Boer FR (1980) Cohesion in alloys—fundamentals of a semi-empirical model. Phys B+ C 100:1–28. https://doi.org/10.1016/0378-4363(80)90054-6
Miedema AR, Niessen AK, de Boer FR et al (1989) Cohesion in metals: transition metal alloys. North-Holland, Amsterdam
Bakker H, Miedema AR (1998) Enthalpies in alloys: Miedema’s semi-empirical model. Trans Tech Publications, Zurich
Zhang RF, Liu BX (2002) Proposed model for calculating the standard formation enthalpy of binary transition-metal systems. Appl Phys Lett 81:1219–1221
Zhang RF, Sheng SH, Liu BX (2007) Predicting the formation enthalpies of binary intermetallic compounds. Chem Phys Lett 442:511–514
Zhang RF, Rajan K (2014) Statistically based assessment of formation enthalpy for intermetallic compounds. Chem Phys Lett 612:177–181
Gilman JJ (2009) Chemistry and physics of mechanical hardness. Wiley, Hoboken
Kattner UR, Boettinger WJ (1992) Thermodynamic calculation of the ternary TiAlNb system. Mater Sci Eng A 152:9–17. https://doi.org/10.1016/0921-5093(92)90039-4
Jia BR, Liu LB, Yi DQ et al (2008) Thermodynamic assessment of the Al-Mg-Sm system. J Alloys Compd 459:267–273
Ansara I, Dupin N, Lukas HL, Sundman B (1997) Thermodynamic assessment of the Al-Ni system. J Alloys Compd 247:20–30. https://doi.org/10.1016/S0925-8388(96)02652-7
Roine A (2002) HSC Chemistry 5(11):76
Weaver MI, Stevenson ME, Bradt RC (2003) Knoop hardness anisotropy and the indentation size effect on the (100) of single crystal NiAl. Mater Sci Eng A 345:113–117. https://doi.org/10.1016/S0921-5093(02)00454-9
Ke L, Huang C, Xing L, Huang K (2010) Al-Ni intermetallic composites produced in situ by friction stir processing. J Alloys Compd 503:494–499
Konieczny M, Mola R, Thomas P, Kopcial M (2011) Processing, microstructure and properties of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils. Arch Metall Mater 56:693–702
Kumar KG, Sivarao ATJS (2011) A novel intermetallic nickel aluminide (Ni3Al) as an alternative automotive body material. Int J Eng Technol 11:208–215
Song YK, R a V (2001) Phase equilibria and intermetallic phases in the Ni-Si-Mg ternary system. Metall Mater Trans A 32:5–18. https://doi.org/10.1007/s11661-001-0246-z
Nasiri AM, Weckman DC, Zhou Y (2013) Interfacial microstructure of diode laser brazed AZ31B magnesium to steel sheet using a nickel interlayer. Weld J 92:1–10
Qi X, Song G (2010) Interfacial structure of the joints between magnesium alloy and mild steel with nickel as interlayer by hybrid laser-TIG welding. Mater Des 31:605–609. https://doi.org/10.1016/j.matdes.2009.06.043
Matsunawa A, Mizutani M, Katayama S, Seto N (2003) Porosity formation mechanism and its prevention in laser lap welding. Weld Int 17:431–437. https://doi.org/10.1016/j.jmatprotec.2014.03.011
Haboudou A, Peyre P, Vannes AB, Peix G (2003) Reduction of porosity content generated during Nd: YAG laser welding of A356 and AA5083 aluminium alloys. Mater Sci Eng A 363:40–52. https://doi.org/10.1016/S0921-5093(03)00637-3
Zhao H, White DR, DebRoy T (1999) Current issues and problems in laser welding of automotive aluminum alloys. Int Mater Rev 44:238–266
Raghavan V (2009) Al-Mg-Ni (Aluminum-Magnesium-Nickel). J Phase Equilibria Diffus 30:274–275. https://doi.org/10.1007/s11669-009-9519-9
Du Y, Chang YA, Huang B et al (2003) Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Mater Sci Eng A 363:140–151. https://doi.org/10.1016/S0921-5093(03)00624-5
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Shah, L.H., Gerlich, A. & Zhou, Y. Design guideline for intermetallic compound mitigation in Al-Mg dissimilar welding through addition of interlayer. Int J Adv Manuf Technol 94, 2667–2678 (2018). https://doi.org/10.1007/s00170-017-1038-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00170-017-1038-y