Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards a tolerance representation model for generating tolerance specification schemes and corresponding tolerance zones

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this paper, a tolerance representation model for generating tolerance specification schemes and corresponding tolerance zones is proposed to meet the requirement of the representation of tolerance information semantics. This model is hierarchically organized and consists of five layers. They are component, geometric feature, variational geometric constraint, tolerance specification scheme, and tolerance zone layers. The mating relations between components in the component layer, the mating relations between geometric features in the geometric feature layer, the variational geometric constraints between geometric features in the variational geometric constraint layer, the tolerance specification schemes of component in the tolerance specification scheme layer, and the tolerance zones of tolerance specification schemes in the tolerance zone layer are formally defined by one or more adjacency matrices, respectively. Based on the model, a method for generating tolerance specification schemes for component and their resultant tolerance zones is designed. This method shows how to adopt a top-down strategy to carry out tolerance specification for an arbitrary assembly designed in a CAD system. The paper also provides a practical example to illustrate how the method works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guilford J, Turner J (1993) Representational primitives for geometric tolerancing. Comput Aided Des 25(9):577–586

    Article  Google Scholar 

  2. Qin Y, Qi Q, Lu W, Liu X, Scott PJ, Jiang X (2018) A review of representation models of tolerance information. Int J Adv Manuf Technol 95(5–8):2193–2206

    Article  Google Scholar 

  3. Qin Y, Zhong Y, Huang M, Liu F (2014) An assembly tolerance representation model based on spatial relations for generating assembly tolerance types. Proc IMechE Part C J Mech Eng Sci 228(6):1005–1020

    Article  Google Scholar 

  4. Liu Y, Gao S, Cao Y (2009) An efficient approach to interpreting rigorous tolerance semantics for complicated tolerance specification. IEEE Trans Autom Sci Eng 6(4):670–684

    Article  Google Scholar 

  5. Franciosa P, Gerbino S, Patalano S (2010) Variational modeling and assembly constraints in tolerance analysis of rigid part assemblies: planar and cylindrical features. Int J Adv Manuf Technol 49(1–4):239–251

    Article  Google Scholar 

  6. Pasupathy TMK, Morse EP, Wilhelm RG (2003) A survey of mathematical methods for the construction of geometric tolerance zones. ASME Trans J Comput Inf Sci Eng 3(1):64–75

    Article  Google Scholar 

  7. Shah JJ, Yan Y, Zhang BC (1998) Dimension and tolerance modeling and transformations in feature based design and manufacturing. J Intell Manuf 9(5):475–488

    Article  Google Scholar 

  8. Roy U, Li B (1998) Representation and interpretation of geometric tolerances for polyhedral objects I: form tolerances. Comput Aided Des 30(2):151–161

    Article  Google Scholar 

  9. Roy U, Li B (1999) Representation and interpretation of geometric tolerances for polyhedral objects II: size, orientation and position tolerances. Comput Aided Des 31(4):273–285

    Article  MATH  Google Scholar 

  10. Davidson JK, Mujezinovic A, Shah JJ (2002) A new mathematical model for geometric tolerances as applied to round faces. ASME Trans J Mech Des 124(4):609–622

    Article  Google Scholar 

  11. Mujezinovic A, Davidson JK, Shah JJ (2004) A new mathematical model for geometric tolerances as applied to polygonal faces. ASME Trans J Mech Des 126(3):504–518

    Article  Google Scholar 

  12. Ameta G, Davidson JK, Shah JJ (2007) Tolerance-maps applied to a point-line cluster of features. ASME Trans J Mech Des 129(8):782–792

    Article  Google Scholar 

  13. Wu Y, Shah JJ, Davidson JK (2003) Computer modeling of geometric variations in mechanical parts and assemblies. ASME Trans J Comput Inf Sci Eng 3(1):54–63

    Article  Google Scholar 

  14. Ballu A, Mathieu L (1999) Choice of functional specifications using graphs within the framework of education. In: Proc. 6th CIRP Int. Conf. Comput. Aided Tolerancing. Springer, Houten, pp 197–206

    Google Scholar 

  15. Wang H, Roy U, Sudarsan R, Sriram RD, Lyons KW (2003) Functional tolerancing of a gearbox. Proc. North Am. Manuf. Res. Conf. National Institute of Standards and Technology, Gaithersburg, pp 1–8

  16. Armillotta A (2013) A method for computer-aided specification of geometric tolerances. Comput Aided Des 45(12):1604–1616

    Article  Google Scholar 

  17. Haghighi P, Mohan P, Kalish N, Vemulapalli P, Shah JJ, Davidson JK (2015) Toward automatic tolerancing of mechanical assemblies: First-order GD&T schema development and tolerance allocation. ASME Trans J Comput Inf Sci Eng 15(4):041003

    Article  Google Scholar 

  18. Anselmetti B, Mawussi K (2003) Computer aided tolerancing using positioning features. ASME Trans J Comput Inf Sci Eng 3(1):15–21

    Article  Google Scholar 

  19. Anselmetti B (2006) Generation of functional tolerancing based on positioning features. Comput Aided Des 38(8):902–919

    Article  Google Scholar 

  20. Cao Y, Zhang H, Li B, Wu Z, Yang J (2013) Study on functional specification scheme on interface based on positioning features. Proc IMechE Part B J Eng Manuf 227(5):745–753

    Article  Google Scholar 

  21. Desrochers A, Clement A (1994) A dimensioning and tolerancing assistance model for CAD/CAM systems. Int J Adv Manuf Technol 9(6):352–361

    Article  Google Scholar 

  22. Clement A, Riviere A, Serre P, Valade C (1998) The TTRSs: 13 constraints for dimensioning and tolerancing. In: Proc. 5th CIRP Int. Conf. Comput. Aided Tolerancing. Chapman and Hall, London, pp 122–131

    Google Scholar 

  23. Srinivasan V (1999) A geometrical product specification language based on a classification of symmetry group. Comput Aided Des 31(11):659–668

    Article  MATH  Google Scholar 

  24. Desrochers A, Maranzana R (1995) Constrained dimensioning and tolerancing assistance for mechanisms. In: Proc 4th CIRP Int. Sem. Comput. Aided Tolerancing. Springer Netherlands, Houten, pp 17–30

    Google Scholar 

  25. Cao Y, Zhao Q, Liu T, Ren L, Yang J (2018) The Strategy of Datum Reference Frame Selection Based on Statistical Learning. ASME Trans J Comput Inf Sci Eng 18(2):021002.

  26. Tsai JC, Cutkosky MR (1997) Representation and reasoning of geometric tolerances in design. Artif Intell Eng Des Anal Manuf 11(4):325–341

    Article  Google Scholar 

  27. Hu J, Xiong G, Wu Z (2004) A variational geometric constraints network for a tolerance types specification. Int J Adv Manuf Technol 24(3–4):214–222

    Google Scholar 

  28. Franciosa P, Patalano S, Riviere A (2010) 3D tolerance specification: an approach for the analysis of the global consistency based on graphs. Int J Interact Des Manuf 4(1):1–10

    Article  Google Scholar 

  29. Franciosa P, Gerbino S, Lanzotti A, Patalano S (2013) Automatic evaluation of variational parameters for tolerance analysis of rigid parts based on graphs. Int J Interact Des Manuf 7(4):239–248

    Article  Google Scholar 

  30. ISO 10303-242 (2014) Industrial automation systems and integration—product data representation and exchange—part 242: application protocol: managed model-based 3D engineering. International Organization for Standardization, Geneva

    Google Scholar 

  31. Rachuri S, Han YH, Feng SC, Roy U, Wang F, Sriram RD, Lyons KW (2004) Object-oriented representation of electro-mechanical assemblies using UML. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  32. Zhao X, Pasupathy TK, Wilhelm RG (2006) Modeling and representation of geometric tolerances information in integrated measurement processes. Comput Ind 57(4):319–330

    Article  Google Scholar 

  33. Dantan JY, Ballu A, Mathieu L (2008) Geometrical product specifications—model for product life cycle. Comput Aided Des 40(4):493–501

    Article  Google Scholar 

  34. Ballu A, Dantan JY, Mathieu L (2010) Language of Tolerancing: GeoSpelling. In: Villeneuve F, Mathieu L (eds) Geometric Tolerancing of Products. John Wiley & Sons, Hoboken, pp 23–53

    Google Scholar 

  35. Ballu A, Mathieu L, Dantan JY (2015) Formal language for GeoSpelling. ASME Trans J Comput Inf Sci Eng 15(2):021002

    Article  Google Scholar 

  36. Wang Y, Scott PJ, Jiang X (2005) The structure of surface texture knowledge. J Phys Conf Ser 13(1):1–4

    Google Scholar 

  37. Lu W, Jiang X, Liu X, Qi Q, Scott PJ (2010) Modeling the integration between specifications and verification for cylindricity based on category theory. Meas Sci Technol 21(11):115107

    Article  Google Scholar 

  38. Xu Y, Xu Z, Jiang X, Scott P (2011) Developing a knowledge based system for complex geometrical product specification (GPS) data manipulation. Knowl Based Syst 24(1):10–22

    Article  Google Scholar 

  39. Qi Q, Jiang X, Scott PJ (2012) Knowledge modeling for specifications and verification in areal surface texture. Precis Eng 36(2):322–333

    Article  Google Scholar 

  40. Qi Q, Scott PJ, Jiang X, Lu W (2014) Design and implementation of an integrated surface texture information system for design, manufacture and measurement. Comput Aided Des 57(12):41–53

    Article  Google Scholar 

  41. Zhang Y, Li Z, Xu L, Wang J (2011) A new method for automatic synthesis of tolerances for complex assemblies based on polychromatic sets. Enterp Inf Syst 5(3):337–358

    Article  Google Scholar 

  42. Zhang Y, Li Z, Gao J, Hong J (2011) New reasoning algorithm for assembly tolerance specifications and corresponding tolerance zone types. Comput Aided Des 43(12):1606–1628

    Article  Google Scholar 

  43. Fiorentini X, Gambino I, Liang VC, Foufou S, Rachuri R, Mani M, Bock C (2007) An ontology for assembly representation. National Institute of Standards and Technology, Gaithersburg

    Book  Google Scholar 

  44. Lu W, Qin Y, Liu X, Huang M, Zhou L, Jiang X (2015) Enriching the semantics of variational geometric constraint data with ontology. Comput Aided Des 63(6):72–85

    Article  MathSciNet  Google Scholar 

  45. Zhong Y, Qin Y, Huang M, Lu W, Chang L (2014) Constructing a meta-model for assembly tolerance types with a description logic based approach. Comput Aided Des 48(3):1–16

    Article  Google Scholar 

  46. Qin Y, Lu W, Qi Q, Liu X, Zhou L, Li T (2015) Ontology-based semantic interpretation of cylindricity specification in the next-generation GPS. Proc. 13th CIRP Int. Conf. Comput. Aided Tolerancing. Procedia CIRP 27:124–130

    Article  Google Scholar 

  47. Qin Y, Lu W, Qi Q, Li T, Huang M, Scott PJ, Jiang X (2017) Explicitly representing the semantics of composite positional tolerance for patterns of holes. Int J Adv Manuf Technol 90(5):2121–2137

    Article  Google Scholar 

  48. Zhong Y, Qin Y, Huang M, Lu W, Gao W, Du Y (2013) Automatically generating assembly tolerance types with an ontology-based approach. Comput Aided Des 45(11):1253–1275

    Article  Google Scholar 

  49. Qin Y, Lu W, Liu X, Huang M, Zhou L, Jiang X (2015) Description logic-based automatic generation of geometric tolerance zones. Int J Adv Manuf Technol 79(5):1221–1237

    Article  Google Scholar 

  50. Qin Y, Lu W, Qi Q, Liu X, Zhong Y, Scott PJ, Jiang X (2017) Status, comparison, and issues of computer-aided design model data exchange methods based on standardized neutral files and web ontology language file. ASME Trans J Comput Inf Sci Eng 17(1):010801

    Article  Google Scholar 

  51. Qin Y, Lu W, Qi Q, Liu X, Huang M, Scott PJ, Jiang X (2018) Towards an ontology-supported case-based reasoning approach for computer-aided tolerance specification. Knowl Based Syst 141(2):129–147

  52. Ameta G, Singh G, Davidson JK, Shah JJ (2017) Application of T-maps for composite position tolerance for patterns of features. ASME 2017 Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. American Society of Mechanical Engineers, New York, p V001T02A014-V001T02A014

Download references

Acknowledgements

The authors would like to appreciate the insightful comments from the three anonymous reviewers and the regional editor Professor Andrew Y. C. Nee for the improvement of the paper. The authors also would like to acknowledge the financial supports by the National Natural Science Foundation of China (Nos. 51475190 and 51365009), the Hubei Provincial Natural Science Foundation of China (No. 2015CFA109), the Doctoral Dissertation Innovation Foundation of Huazhong University of Science and Technology, and the National Scholarship of China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Lu, W., Qi, Q. et al. Towards a tolerance representation model for generating tolerance specification schemes and corresponding tolerance zones. Int J Adv Manuf Technol 97, 1801–1821 (2018). https://doi.org/10.1007/s00170-018-1977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-1977-y

Keywords