Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Process investigation and mechanical properties of electro sinter forged (ESF) titanium discs

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Classified as an electric current–assisted sintering (ECAS) process, electro sinter forging (ESF) represents a sintering process following the resistance heating approach. The powder is simultaneously compacted and heated in a closed-die setup. The heating is generated by the Joule effect from the electrical current. Near net shape components of conductive materials are made in the closed-die setup within a short process time (100–400 ms). The final relative density is an important quality measure for the sintered parts. In the present work, samples of commercially pure titanium are produced with up to 98% relative density by optimisation of the main process parameters, namely electrical current density, compaction pressure and sintering time. Metallographic observations revealed that porosities were mostly found at the perimeter of the sintered samples. Mechanical testing by μ-Vickers hardness test, uniaxial compression and indirect tensile tests showed improved properties of the material with increasing density. The achieved mechanical properties were compatible with the theoretical values for bulk titanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

ASTM:

American Society for Testing and Materials International

bcc:

Body-centred cubic

BSD:

Backscattered detector

ECAS:

Electric current–assisted sintering

ESF:

Electro sinter forging

FAST:

Field-assisted sintering technology

GUM:

Guide to the expression of uncertainty in measurement

hcc:

Hexagonal close-packed

HP:

Hot pressing

HV:

Hardness Vickers

IDT:

Indirect tensile test

ISO:

International Organization for Standardization

LOM:

Light optical microscopy

MFDC:

Middle-frequency direct current

SEM:

Scanning electron microscope

SPS:

Spark plasma sintering

References

  1. Castro RHR (2013) Sintering. Springer Berlin Heidelberg, Berlin

    Book  Google Scholar 

  2. Atkinson HV, Davies S (2000) Fundamental aspects of hot isostatic pressing: an overview. Metall Mater Trans A Phys Metall Mater Sci 31:2981–3000. https://doi.org/10.1007/s11661-000-0078-2

    Article  Google Scholar 

  3. Bhandhubanyong P, Akhadejdamrong T (1997) Forming of silicon nitride by the HIP process. J Mater Process Technol 63:277–280. https://doi.org/10.1016/S0924-0136(96)02635-0

    Article  Google Scholar 

  4. Kessel HU, Hennicke J, Schmidt J, et al (2008) “FAST” field assisted sintering technology- a new process for the production of metallic and ceramic sintering materials

  5. Grasso S, Sakka Y, Maizza G (2009) Electric current activated/assisted sintering ( ECAS ): a review of patents 1906–2008. Sci Technol Adv Mater 10:053001. https://doi.org/10.1088/1468-6996/10/5/053001

    Article  Google Scholar 

  6. Anselmi-Tamburini U, Groza JR (2017) Critical assessment: electrical field/current application–a revolution in materials processing/sintering? Mater Sci Technol (United Kingdom) 33:1855–1862. https://doi.org/10.1080/02670836.2017.1341692

    Article  Google Scholar 

  7. Hitchcock D, Livingston R, Liebenberg D (2015) Improved understanding of the spark plasma sintering process. J Appl Phys 117:1–6. https://doi.org/10.1063/1.4919814

    Article  Google Scholar 

  8. Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, Herrmann M (2014) Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16:830–849. https://doi.org/10.1002/adem.201300409

    Article  Google Scholar 

  9. Dong Z, Zhang J, Li S et al (2015) Sintering and densification (I)—conventional sintering technologies. Opt Mater:291–394

  10. Vanmeensel K, Laptev A, Huang SG et al (2012) The role of the electric current and field during pulsed electric current sintering. In: Ceramics and composites processing methods. Wiley, Hoboken, pp 43–73

    Chapter  Google Scholar 

  11. Bonifacio CS, Holland TB, van Benthem K (2013) Evidence of surface cleaning during electric field assisted sintering. Scr Mater 69:769–772. https://doi.org/10.1016/j.scriptamat.2013.08.018

    Article  Google Scholar 

  12. Yurlova MS, Demenyuk VD, Lebedeva LY, Dudina DV, Grigoryev EG, Olevsky EA (2014) Electric pulse consolidation: an alternative to spark plasma sintering. J Mater Sci 49:952–985. https://doi.org/10.1007/s10853-013-7805-8

    Article  Google Scholar 

  13. Fais A (2010) Processing characteristics and parameters in capacitor discharge sintering. J Mater Process Technol 210:2223–2230. https://doi.org/10.1016/j.jmatprotec.2010.08.009

    Article  Google Scholar 

  14. Forno I, Actis Grande M, Fais A (2015) On the application of electro-sinter-forging to the sintering of high-karatage gold powders. Gold Bull 48:127–133. https://doi.org/10.1007/s13404-015-0169-x

    Article  Google Scholar 

  15. Fais A, Leoni M, Scardi P (2012) Fast sintering of nanocrystalline copper. Metall Mater Trans A 43:1517–1521. https://doi.org/10.1007/s11661-011-0727-7

    Article  Google Scholar 

  16. Fais A, Actis Grande M, Forno I (2016) Influence of processing parameters on the mechanical properties of electro-sinter-forged iron based powders. Mater Des 93:458–466. https://doi.org/10.1016/j.matdes.2015.12.142

    Article  Google Scholar 

  17. Lagos MA, Agote I, Schubert T, Weissgaerber T, Gallardo JM, Montes JM, Prakash L, Andreouli C, Oikonomou V, Lopez D, Calero JA (2017) Development of electric resistance sintering process for the fabrication of hard metals: processing, microstructure and mechanical properties. Int J Refract Met Hard Mater 66:88–94. https://doi.org/10.1016/j.ijrmhm.2017.03.005

    Article  Google Scholar 

  18. Montes JM, Rodríguez JA, Cuevas FG, Cintas J (2011) Consolidation by electrical resistance sintering of Ti powder. J Mater Sci 46:5197–5207. https://doi.org/10.1007/s10853-011-5456-1

    Article  Google Scholar 

  19. Yu M, Grasso S, Mckinnon R, Saunders T, Reece MJ (2017) Review of flash sintering: materials, mechanisms and modelling. Adv Appl Ceram 116:24–60. https://doi.org/10.1080/17436753.2016.1251051

    Article  Google Scholar 

  20. Grigoryev EG, Olevsky EA (2012) Thermal processes during high-voltage electric discharge consolidation of powder materials. Scr Mater 66:662–665. https://doi.org/10.1016/j.scriptamat.2012.01.035

    Article  Google Scholar 

  21. Solimanjad N, Larsson M (2005) Tribological properties of lubricants used in PM process. In: Euro Pm 2005: powder metallurgy congress and exhibition. European Powder Metallurgy Association (EPMA), Shrewsbury, pp 123–131

    Google Scholar 

  22. Cannella E, Nielsen CV (2018) Lubricant influence on the ejection and roughness of in-die electro sinter forged Ti-discs. Key Eng Mater 767:171–178. https://doi.org/10.4028/www.scientific.net/KEM.767.171

    Article  Google Scholar 

  23. Cannella E, Nielsen CV, Bay N (2018) Process parameter influence on electro-sinter-forging (ESF) of titanium discs. In: 18th Int. Conf. EUr. Soc. Precis. Eng. Nanotechnology, EUSPEN 2018. euspen, pp 315–316

  24. ASTM International (2013) Standard test methods for density of compacted or sintered powder metallurgy (PM) products using Archimedes’ principle. Astm B962-13(i):1–7. https://doi.org/10.1520/B0962-13.2

    Article  Google Scholar 

  25. Fais A (2018) A faster FAST: electro-sinter-forging. Met Powder Rep 73:80–86. https://doi.org/10.1016/j.mprp.2017.06.001

    Article  Google Scholar 

  26. Montes JM, Cuevas FG, Cintas J, Urban P (2011) Electrical conductivity of metal powders under pressure. Appl Phys A Mater Sci Process 105:935–947. https://doi.org/10.1007/s00339-011-6515-9

    Article  Google Scholar 

  27. ISO/IEC (2008) Guide 98-3: 2008 uncertainty of measurement -- part 3: guide to the expression of uncertainty in measurement (GUM:1995). https://www.iso.org/standard/50461.html. Accessed 5 May 2017

  28. Gammon LM, Briggs RD, Packard JM et al (2004) Metallography and microstructures of titanium and its alloys. Mater Park OH ASM Int 9:899–917. https://doi.org/10.1361/asmhba0003779

    Article  Google Scholar 

  29. Yan M, Luo SD, Schaffer GB, Qian M (2013) Impurity (Fe, Cl, and P)-induced grain boundary and secondary phases in commercially pure titanium (CP-Ti). Metall Mater Trans A Phys Metall Mater Sci 44:3961–3969. https://doi.org/10.1007/s11661-013-1720-0

    Article  Google Scholar 

  30. Olevsky EA, Dudina DV (2018) Resistance Sintering. In: Resistance sintering. Springer International Publishing, Cham

    Chapter  Google Scholar 

  31. Höganäs AB (2013) Production of sintered components. Höganäs AB 1:170

    Google Scholar 

  32. Montes JM, Cuevas FG, Cintas J (2011) Electrical resistivity of a titanium powder mass. Granul Matter 13:439–446. https://doi.org/10.1007/s10035-010-0246-z

    Article  Google Scholar 

  33. Foundry Lexicon (2018) Microporosity. https://www.giessereilexikon.com/en/foundry-lexicon/Encyclopedia/show/microporosity-3953/?cHash=dc19bc24c4de598f06f1e1167ba2b379. Accessed 26 Apr 2018

  34. ISO (2018) BS EN 6507-1:2018 - Metallic materials — Vickers hardness test — Part 1: test method. https://www.iso.org/obp/ui/#iso:std:iso:6507:-1:ed-4:v1:en. Accessed 20 Jan 2018

  35. Firm K, Boyer R, Welsch G (1994) Materials properties handbook: titanium alloys

  36. Poondla N, Srivatsan TS, Patnaik A, Petraroli M (2009) A study of the microstructure and hardness of two titanium alloys: commercially pure and Ti-6Al-4V. J Alloys Compd 486:162–167. https://doi.org/10.1016/j.jallcom.2009.06.172

    Article  Google Scholar 

  37. Khodabakhshi F, Haghshenas M, Eskandari H, Koohbor B (2015) Hardness-strength relationships in fine and ultra-fine grained metals processed through constrained groove pressing. Mater Sci Eng A 636:331–339. https://doi.org/10.1016/j.msea.2015.03.122

    Article  Google Scholar 

  38. Dieter GE, Bacon D, George Ellwood Dieter DB (1988) Mechanical metallurgy

  39. Fahad MK (1996) Stresses and failure in the diametral compression test. J Mater Sci 31:3723–3729. https://doi.org/10.1007/BF00352786

    Article  Google Scholar 

  40. Procopio AT, Zavaliangos A, Cunningham JC (2003) Analysis of the diametrical compression test and the applicability to plastically deforming materials. J Mater Sci 38:3629–3639. https://doi.org/10.1023/A:1025681432260

    Article  Google Scholar 

Download references

Acknowledgements

This research work was undertaken in the context of MICROMAN project (“Process Fingerprint for Zerodefect Net-shape MICROMANufacturing”, http://www.microman.mek.dtu.dk/). MICROMAN is a European Training Network supported by Horizon 2020, the EU Framework Programme for Research and Innovation (Project ID: 674801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Valentin Nielsen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannella, E., Nielsen, C.V. & Bay, N. Process investigation and mechanical properties of electro sinter forged (ESF) titanium discs. Int J Adv Manuf Technol 104, 1985–1998 (2019). https://doi.org/10.1007/s00170-019-03972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03972-z

Keywords