Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finite element modelling and experimental validation of microstructural changes and hardness variation during gas metal arc welding of AISI 441 ferritic stainless steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Grain growth and hardness variation occurring in high-temperature heat affected zone (HAZ) during the welding processes are two thermal dependant aspects of great interest for both academic and industrial research activities. This paper presents an innovative finite element (FE) model capable to describe the grain growth and the hardness decrease that occur during the gas metal arc welding (GMAW) of commercial AISI 441 steel. The commercial FE software SFTC DEFORM-3D™ was used to simulate the GMAW process, and a user subroutine was developed including a physical based model and the Hall–Petch (H-P) equation to predict grain size variation and hardness change. The model was validated by comparison with the experimental results showing its reliability in predicting important welding characteristics temperature dependant. The study provides an accurate numerical model (i.e. user subroutine, heat source fitting, geometry) able to successfully predict the thermal phenomena (i.e. coarsening of the grains and hardening decrease) that occur in the HAZ during welding process of ferritic stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Not applicable

Code availability

commercial FE software SFTC DEFORM-3D™

Abbreviations

C 0 :

Numerical constant

C 1 :

Numerical constant

D :

Current grain size

D 0 :

Initial grain size

FE:

Finite element

FEM:

Finite element method

FZ:

Fusion zone

GMAW:

Gas metal arc welding

GTAW:

Gas tungsten arc welding

HAZ:

Heat affected zone

H-P:

Hall-Petch

HV:

Hardness Vickers

IRC:

Infra-red camera

Q :

Activation energy for grain growth

R :

Gas constant

T :

Current temperature

TIG:

Tungsten inert gas

a :

Heat source parameter

b :

Heat source parameter

c 1 :

Heat source parameter

c 2 :

Heat source parameter

d :

Average grain size

k :

Numerical constant

k y :

Numerical constant

k 0 :

Numerical constant

σ y :

Yield strength

σ 0 :

Numerical constant

m :

Numerical constant

t :

Time

References

  1. Venkatkumar D, Ravindran D (2016) 3D finite element simulation of temperature distribution, residual stress and distortion on 304 stainless steel plates using GTA welding. J Mech Sci Technol 30:67–76. https://doi.org/10.1007/s12206-015-1208-5

    Article  Google Scholar 

  2. Balram Y, Vishu Vardhan T, Sridhar Babu B, Venkat Ramana G, Preethi C (2019) Thermal stress analysis of AISI 316 stainless steels weldments in TIG and pulse TIG welding processes. Mater Today Proc 19(2):182–187. https://doi.org/10.1016/j.matpr.2019.06.695

    Article  Google Scholar 

  3. Vasantharaja P, Maduarimuthu V, Vasudevan M, Palanichamy P (2012) Assessment of residual stresses and distortion in stainless steel weld joints. Mater Manuf Process 27:1376–1381. https://doi.org/10.1080/10426914.2012.663135

    Article  Google Scholar 

  4. Sule J, Ganguly S, Coules H, Pirling T (2015) Application of local mechanical tensioning and laser processing to refine microstructure and modify residual stress state of a multi-pass 304L austenitic steels welds. J Manuf Process Int J Plast 18:141–150. https://doi.org/10.1016/j.jmapro.2015.03.003

    Article  Google Scholar 

  5. Puliyaneth M, Chen H (2021) Study on the effect of welding residual stress on creep-cyclic plasticity behaviour. Int J Press Vessels Pip 193:104444. https://doi.org/10.1016/j.ijpvp.2021.104444

    Article  Google Scholar 

  6. Chuan L, Jianxun Z, Jing N (2009) Numerical and experimental analysis of residual stresses in full-penetration laser beam welding of Ti6Al4V alloy. Rare Metal Mat Eng 38:1317–1320. https://doi.org/10.1016/S1875-5372(10)60066-5

    Article  Google Scholar 

  7. Ordieres J, Rodríguez E, Bayón A, Caixas J, Barbensi A, Martín C (2021) Determination of the influence of clamping on welding distortion applied to PS2 mock-up using finite element simulations. Fusion Eng Des 166:112327. https://doi.org/10.1016/j.fusengdes.2021.112327

    Article  Google Scholar 

  8. Woo D, Kitamura M, Takezawa A (2020) Systematic method for positioning clamps and strongbacks based on their influence on welding displacements. Ocean Eng 202:107084. https://doi.org/10.1016/j.oceaneng.2020.107084

    Article  Google Scholar 

  9. Mondal AK, Kumar B, Bag S, Nirsanametla Y, Biswas P (2021) Development of avocado shape heat source model for finite element based heat transfer analysis of high-velocity arc welding process. Int J Therm Sci 166:107005. https://doi.org/10.1016/j.ijthermalsci.2021.107005

    Article  Google Scholar 

  10. Unni AK, Vasudevan M (2021) Determination of heat source model for simulating full penetration laser welding of 316 LN stainless steel by computational fluid dynamics. Mater Today: proc 45(6):4465–4471. https://doi.org/10.1016/j.matpr.2020.12.842

    Article  Google Scholar 

  11. Xu JJ, Gilles P, Duan YG, Yu C (2012) Temperature and residual stress simulations of the NeT single-bead-on-plate specimen using SYSWELD. Int J Press Vessels Pip 99–100:51–60. https://doi.org/10.1016/j.ijpvp.2012.08.002

    Article  Google Scholar 

  12. Prabakaran ST, Sakthivel P, Shanmugam M, Satish S, Muniyappan M, Shaisundaram VS (2021) Modelling and experimental validation of TIG welding of INCONEL 718. Mater Today Proc 37(2):1917–1931. https://doi.org/10.1016/j.matpr.2020.07.482

    Article  Google Scholar 

  13. Balasubramanian KR, Suthakar T, Sankaranarayanasamy K (2012) Finite element analysis of heat distribution in laser beam welding of AISI 304 stainless steel sheet. Int J Manuf 7(1):42–58. https://doi.org/10.1504/IJMR.2012.045243

    Article  Google Scholar 

  14. Zubairuddin M, Albert SK, Mahadevan S, Vasudevan M, Chaudhari V, Suri VK (2014) Experimental and finite element analysis of residual stress and distortion in GTA welding of modified 9Cr-1Mo steel. J Mech Sci Technol 28(12):5095–5105. https://doi.org/10.1007/s12206-014-1132-0

    Article  Google Scholar 

  15. Panda SK, Sreenivasan N, Kuntz ML, Zhou Y (2008) Numerical simulations and experimental results of tensile test behavior of laser butt welded DP980 steels. J Eng Mater Technol 130(4):041003. https://doi.org/10.1115/1.2969256

    Article  Google Scholar 

  16. Deshpande AA, Xu L, Sun W, McCartney DG, Hyde TH (2011) Finite-element-based parametric study on welding-induced distortion of TIG-welded stainless steel 304 sheets. J Strain Anal Enf Des 46(4):267–279. https://doi.org/10.1177/0309324711398763

    Article  Google Scholar 

  17. Konar R, Patek M (2017) Numerical simulation of dissimilar weld joint in SYSWELD simulation software. Tech Gaz 24(1):137–142. https://doi.org/10.17559/TV-20150513074103

    Article  Google Scholar 

  18. Narayanareddy VV, Srinivasa RD, Krishnaveni MNV, Amareswarireddy M (2015) Finite element modeling of TIG welding for 316L stainless steel plate using Sysweld. Int J Eng Mang Res 5(2):390–397 (ISSN (ONLINE): 2250-0758, ISSN (PRINT): 2394-6962)

    Google Scholar 

  19. Del Coz DJJ, Menéndez Rodríguez P, García Nieto PJ, Castro-Fresno D (2010) Comparative analysis of TIG welding distortions between Austenitic and Duplex Stainless Steels by FEM. Appl Therm Eng 30(16):2448–2459. https://doi.org/10.1016/j.applthermaleng.2010.06.016

    Article  Google Scholar 

  20. Huang Y-C, Su C-H, Wu S-K, Lin C (2019) A Study on the Hall-Petch Relationship and Grain Growth Kinetics in FCC-structured high/medium entropy alloys. Entropy 21(3):297. https://doi.org/10.3390/e21030297

    Article  Google Scholar 

  21. Moravec J, Novakova I, Sobotka J, Neumann H (2019) Huang Y-C, Su C-H, Wu S-K, Lin C (2019) Determination of grain growth kinetics and assessment of welding effect on properties of S700MC steel in the HAZ of welded joints. Metals 9(6):707. https://doi.org/10.3390/met9060707

    Article  Google Scholar 

  22. Sello MP, Stumpf WE (2011) Laves phase precipitation and its transformation kinetics in the ferritic stainless steel type AISI 441. Mater Sci Eng A 528(3):1840–1847. https://doi.org/10.1016/j.msea.2010.09.090

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.C. and S.I.; methodology, S.C. and S.I. software, S.C.; validation, S.C.; formal analysis, S.I.; investigation, S.C. and S.I.; resources, S.C. and S.I.; data curation, S.C. and S.I.; writing–original draft preparation, S.C. and S.I.; writing–review and editing, S.C. and S.I.; visualization, S.I.; supervision, S.C. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Serafino Caruso.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruso, S., Imbrogno, S. Finite element modelling and experimental validation of microstructural changes and hardness variation during gas metal arc welding of AISI 441 ferritic stainless steel. Int J Adv Manuf Technol 119, 2629–2637 (2022). https://doi.org/10.1007/s00170-021-08401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-08401-8

Keywords