Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In laser powder bed fusion (LPBF), the stability of melt pool dynamics determines the overall quality of a manufactured component. In this work, a numerical model of the LPBF process was developed in order to study and fully understand the behavior of the melt pool dynamics. The numerical model takes into account most of the manufacturing parameters, thermophysical properties, an enhanced thermal conductivity approach, and a volumetric heat source in order to precisely simulate LPBF. This research assumes that the energy emitted by the laser interacts with the metal powder with an absorptivity gradient through the layer thickness in order to calculate the thermal history of the process and the evolution of the melt pool dimensions. The obtained results determined that melt pool dimensions follow a thermal pattern, which is caused by the laser scanning strategy of the LPBF process. A new effective width criterion was proposed in the present research in order to accurately relate both calculated and measured dimensions of the melt pool, reducing the relative error of the model and obtaining data scattering with a standard deviation of ± 7.21 µm and a relative error of 2.92%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and material

The data presented in this study are available upon request to the corresponding author. All the data is presented within the article.

Code availability

The code used to obtain the FEM results in this study is available upon request to the corresponding author.

References

  1. AlMangour B (2019) Additive manufacturing of emerging materials. Springer

    Book  Google Scholar 

  2. Bruna-Rosso C, Demir AG, Previtali B (2018) Selective laser melting finite element modeling: validation with high-speed imaging and lack of fusion defects prediction. Mater Des 156:143–153. https://doi.org/10.1016/j.matdes.2018.06.037

    Article  Google Scholar 

  3. Ahmadi A, Mirzaeifar R, Moghaddam NS et al (2016) Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: a computational framework. Mater Des 112:328–338. https://doi.org/10.1016/j.matdes.2016.09.043

    Article  Google Scholar 

  4. Cherry JA, Davies HM, Mehmood S et al (2015) Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76:869–879. https://doi.org/10.1007/s00170-014-6297-2

    Article  Google Scholar 

  5. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components — process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  6. Sames WJ, List FA, Pannala S et al (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  Google Scholar 

  7. Liu Y, Zhang J, Pang Z (2018) Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel. Opt Laser Technol 98:23–32. https://doi.org/10.1016/j.optlastec.2017.07.034

    Article  Google Scholar 

  8. Zohdi TI (2018) Modeling and simulation of functionalized materials for additive manufacturing and 3D printing: continuous and discrete media: continuum and discrete element methods. Springer International Publishing

  9. Denlinger ER (2018) Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process — chapter 13. In: Gouge M, Michaleris P (eds) Thermo-mechanical modeling of additive manufacturing. Butterworth-Heinemann, pp 215–227

    Chapter  Google Scholar 

  10. Tang C, Tan JL, Wong CH (2018) A numerical investigation on the physical mechanisms of single track defects in selective laser melting. Int J Heat Mass Transf 126:957–968. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.073

    Article  Google Scholar 

  11. Ansari P, Rehman AU, Pitir F et al (2021) Selective laser melting of 316L austenitic stainless steel: detailed process understanding using multiphysics simulation and experimentation. Metals 11:1076. https://doi.org/10.3390/met11071076

    Article  Google Scholar 

  12. Zakirov A, Belousov S, Bogdanova M et al (2020) Predictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscale. Addit Manuf 35:101236. https://doi.org/10.1016/j.addma.2020.101236

    Article  Google Scholar 

  13. Yu T, Zhao J (2021) Semi-coupled resolved CFD–DEM simulation of powder-based selective laser melting for additive manufacturing. Comput Methods Appl Mech Eng 377:113707. https://doi.org/10.1016/j.cma.2021.113707

    Article  MathSciNet  MATH  Google Scholar 

  14. Le KQ, Wong CH, Chua KHG et al (2020) Discontinuity of overhanging melt track in selective laser melting process. Int J Heat Mass Transf 162:120284. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120284

    Article  Google Scholar 

  15. Li Y, Zhou K, Tan P et al (2018) Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci 136:24–35. https://doi.org/10.1016/j.ijmecsci.2017.12.001

    Article  Google Scholar 

  16. Weirather J, Rozov V, Wille M et al (2019) A smoothed particle hydrodynamics model for laser beam melting of Ni-based alloy 718. Comput Math Appl 78:2377–2394. https://doi.org/10.1016/j.camwa.2018.10.020

    Article  MathSciNet  Google Scholar 

  17. Song J, Wu W, Zhang L et al (2018) Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting. Optik 170:342–352. https://doi.org/10.1016/j.ijleo.2018.05.128

    Article  Google Scholar 

  18. Li J, Wei Z, Yang L et al (2020) Finite element analysis of thermal behavior and experimental investigation of Ti6Al4V in selective laser melting. Optik 207:163760. https://doi.org/10.1016/j.ijleo.2019.163760

    Article  Google Scholar 

  19. Kankanala SH (2015) Analysis of selective laser melting for additive manufacturing process. Northern Illinois University

  20. Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing

    Book  Google Scholar 

  21. Foroozmehr A, Badrossamay M, Foroozmehr E, Golabi S (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Des 89:255–263. https://doi.org/10.1016/j.matdes.2015.10.002

    Article  Google Scholar 

  22. Sih SS, Barlow JW (1994) Measurement and prediction of the thermal conductivity of powders at high temperatures. Austin, Texas, pp 321–329

  23. Sih SS, Barlow JW (2004) The prediction of the emissivity and thermal conductivity of powder beds. Part Sci Technol 22:427–440. https://doi.org/10.1080/02726350490501682

    Article  Google Scholar 

  24. Lemmon EW, Jacobsen RT (2004) Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int J Thermophys 25:21–69. https://doi.org/10.1023/B:IJOT.0000022327.04529.f3

    Article  Google Scholar 

  25. Safdar S, Pinkerton AJ, Li L et al (2013) An anisotropic enhanced thermal conductivity approach for modelling laser melt pools for Ni-base super alloys. Appl Math Model 37:1187–1195. https://doi.org/10.1016/j.apm.2012.03.028

    Article  MATH  Google Scholar 

  26. Roberts IA (2012) Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing. University of Wolverhampton

  27. Ladani L, Romano J, Brindley W, Burlatsky S (2017) Effective liquid conductivity for improved simulation of thermal transport in laser beam melting powder bed technology. Addit Manuf 14:13–23. https://doi.org/10.1016/j.addma.2016.12.004

    Article  Google Scholar 

  28. Faghri A, Zhang Y (2006) Transport phenomena in multiphase systems. Academic Press

    Google Scholar 

  29. Lopez-Botello O, Martinez-Hernandez U, Ramírez J et al (2017) Two-dimensional simulation of grain structure growth within selective laser melted AA-2024. Mater Des 113:369–376. https://doi.org/10.1016/j.matdes.2016.10.031

    Article  Google Scholar 

  30. Liu S, Zhu H, Peng G et al (2018) Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater Des 142:319–328. https://doi.org/10.1016/j.matdes.2018.01.022

    Article  Google Scholar 

  31. Trejos JD, Reyes LA, Garza C et al (2020) Numerical modeling of thermal anisotropy on a selective laser melting process. Rapid Prototyp J 26:1555–1567. https://doi.org/10.1108/RPJ-02-2020-0032

    Article  Google Scholar 

  32. Hussein A, Hao L, Yan C, Everson R (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 1980–2015(52):638–647. https://doi.org/10.1016/j.matdes.2013.05.070

    Article  Google Scholar 

  33. Shi Y, Shen H, Yao Z, Hu J (2007) Temperature gradient mechanism in laser forming of thin plates. Opt Laser Technol 39:858–863. https://doi.org/10.1016/j.optlastec.2005.12.006

    Article  Google Scholar 

  34. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15:299–305. https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  35. Goldak JA, Akhlaghi M (2005) Computational welding mechanics. Springer, US

    Google Scholar 

  36. Mishra AK, Aggarwal A, Kumar A, Sinha N (2018) Identification of a suitable volumetric heat source for modelling of selective laser melting of Ti6Al4V powder using numerical and experimental validation approach. Int J Adv Manuf Technol 99:2257–2270. https://doi.org/10.1007/s00170-018-2631-4

    Article  Google Scholar 

  37. Masmoudi A, Bolot R, Coddet C (2015) Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. J Mater Process Technol 225:122–132. https://doi.org/10.1016/j.jmatprotec.2015.05.008

    Article  Google Scholar 

  38. Li Y, Zhou K, Tor SB et al (2017) Heat transfer and phase transition in the selective laser melting process. Int J Heat Mass Transf 108:2408–2416. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.093

    Article  Google Scholar 

  39. Heeling T, Cloots M, Wegener K (2017) Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit Manuf 14:116–125. https://doi.org/10.1016/j.addma.2017.02.003

    Article  Google Scholar 

  40. Tran H-C, Lo Y-L (2018) Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration. J Mater Process Technol 255:411–425. https://doi.org/10.1016/j.jmatprotec.2017.12.024

    Article  Google Scholar 

  41. Luo Z, Zhao Y (2019) Numerical simulation of part-level temperature fields during selective laser melting of stainless steel 316L. https://doi.org/10.1007/s00170-019-03947-0

  42. Gusarov AV, Yadroitsev I, Bertrand Ph, Smurov I (2007) Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci 254:975–979. https://doi.org/10.1016/j.apsusc.2007.08.074

    Article  Google Scholar 

  43. Gusarov A, Yadroitsev I, Bertrand P, Smurov I (2009). Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. https://doi.org/10.1115/1.3109245

    Article  Google Scholar 

  44. Willy HJ, Li X, Chen Z et al (2018) Model of laser energy absorption adjusted to optical measurements with effective use in finite element simulation of selective laser melting. Mater Des 157:24–34. https://doi.org/10.1016/j.matdes.2018.07.029

    Article  Google Scholar 

  45. Le KQ, Tang C, Wong CH (2019) On the study of keyhole-mode melting in selective laser melting process. Int J Therm Sci 145:105992. https://doi.org/10.1016/j.ijthermalsci.2019.105992

    Article  Google Scholar 

  46. Tan JL, Tang C, Wong CH (2018) A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting. Metall Mater Trans A 49:3663–3673. https://doi.org/10.1007/s11661-018-4697-x

    Article  Google Scholar 

  47. Kohnke P (ed) (2020) Equation Solver. In: Kohnke P (ed) Ansys®Mechanical APDL Theory Reference, Release 19.2, ANSYS Inc, PA, pp 694–697

  48. Poole G, Liu Y-C, Mandel J (2003) Advancing analysis capabilities in ANSYS through solver technology. Electron Trans Numer Anal 15:106–121

    MathSciNet  MATH  Google Scholar 

  49. Tang M, Pistorius PC, Beuth JL (2017) Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 14:39–48. https://doi.org/10.1016/j.addma.2016.12.001

    Article  Google Scholar 

Download references

Funding

The authors received financial support provided by the Institutional Fund for Regional Scientific, Technological and Innovation Development (FORDECyT) of the National Council of Science and Technology (CONACyT) of Mexico, through the project “Aeronautical Strengthening in Mexico’s North East Region.”

Author information

Authors and Affiliations

Authors

Contributions

Methodology — JTT, LRO, CG, OLB; conceptualization — OLB; validation — JTT; formal analysis — JTT; investigation — JTT; writing original draft — JTT; writing review and editing — LRO, CG, PZR, OLB; visualization — JTT, OLB; supervision — PZR, OLB; funding — PZR.

Corresponding author

Correspondence to Omar Lopez-Botello.

Ethics declarations

Ethics approval

The authors confirm that this manuscript has not been submitted to other journals, is not previously published, or in press. The authors confirm that all the presented information is original.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trejos-Taborda, J., Reyes-Osorio, L., Garza, C. et al. Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel. Int J Adv Manuf Technol 120, 3947–3961 (2022). https://doi.org/10.1007/s00170-022-09029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-09029-y

Keywords