Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Empirical wavelet analysis of tail and memory properties of LARCH and FIGARCH models

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Using computationally efficient wavelet methods, we study two nonlinear models of financial returns {r t }: linear ARCH (LARCH) and fractionally integrated GARCH (FIGARCH). We estimate the tail index α and the long memory parameter d of the squared returns \({X_t= r_t^2}\) of LARCH, and of the powers X t = |r t |p of FIGARCH. We find that the X t have infinite variance and long memory, and show how the estimates of α and d depend on the model parameters. These relationships are determined empirically, as the setting is quite complex, and no suitable theory has been developed so far. In particular, we provide empirical relationships between the estimates \({\hat d}\) and the difference parameters in LARCH and FIGARCH. Our computational work uncovers tail and memory properties of LARCH and FIGARCH for practically relevant parameter ranges, and provides some guidance on modeling returns on speculative assets including FX rates, stocks and market indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abry P, Taqqu MS, Pesquet-Popescu B (2000) Wavelet-based estimators for self-similar α-stable processes. In: International conference on signal processing, 16th World Computer Congress, Beijing, pp 369–375

  • Abry P, Flandrin P, Taqqu MS, Veitch D (2002) Self-similarity and long-range dependence through the wavelet lens. In: Doukhan P, Oppenheim G, Taqqu MS (eds) Theory and applications of long range dependence. Birkhäuser, Boston, pp 527–554

    Google Scholar 

  • Baillie RT, Bollerslev T, Mikkelsen HO (1996) Fractionally integrated generalized autoregressive conditional heteroskedasticity. J Econom 74: 3–30

    Article  MATH  MathSciNet  Google Scholar 

  • Baillie RT, Han YW, Myers RJ, Song J (2007) Long memory and FIGARCH models for daily and high frequency commodity prices. J Futures Mark 27: 643–668

    Article  Google Scholar 

  • Basrak B, Davis R, Mikosch T (2002) Regular variation of GARCH processes. Stoch Process Appl 99: 95–115

    Article  MATH  MathSciNet  Google Scholar 

  • Beine M, Laurent S, Lecourt C (2002) Accounting for conditional leptokurtosis and closing days effects in FIGARCH models of daily exchange rates. Appl Financ Econ 12: 589–600

    Article  Google Scholar 

  • Brockwell P, Davis R (2002) Introduction to time series and forecasting, 2nd edn. Springer-Verlag, New York

    MATH  Google Scholar 

  • Campbell JY, Lo AW, MacKinlay AC (1997) The econometrics of financial markets. Princeton University Press, New Jersey

    MATH  Google Scholar 

  • Craigmile P, Guttorp P, Percival DB (2005) Wavelet-based parameter estimation for polynomial contaminated fractionally differenced process. IEEE Trans Signal Process 53: 3151–3161

    Article  MathSciNet  Google Scholar 

  • Davis R, Mikosch T (2009) Extremes of stochastic volatility models. In: Andersen T, Davis R, Kreiß J, Mikosch T (eds) Handbook of financial time series. Springer, New York, pp 355–364

    Chapter  Google Scholar 

  • de Hann L, Resnick S, Rootzén H, de Vries CG (1989) Extremal behaviour of solutions to a stochastic difference equation with application to ARCH processes. Stoch Process Appl 32: 213–224

    Article  Google Scholar 

  • Douc R, Roueff F, Soulier P (2008) On the existence of some ARCH(∞) processes. Stoch Process Appl 118: 755–761

    Article  MATH  MathSciNet  Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Geweke J, Porter-Hudak S (1983) The estimation and application of long memory time series models. J Time Ser Anal 4: 221–238

    Article  MATH  MathSciNet  Google Scholar 

  • Giraitis L, Robinson P, Surgailis D (2000) A model for long memory conditional heteroskedasticity. Ann Appl Probab 10: 1002–1024

    Article  MATH  MathSciNet  Google Scholar 

  • Giraitis L, Kokoszka P, Leipus R, Teyssière G (2003) Rescaled variance and related tests for long memory in volatility and levels. J Econom 112: 265–294

    Article  MATH  Google Scholar 

  • Giraitis L, Leipus R, Robinson P, Surgailis D (2004) LARCH, leverage and long memory. J Financ Econom 2: 177–210

    Article  Google Scholar 

  • Giraitis L, Leipus R, Surgailis D (2008) ARCH(∞) models and long memory properties. In: Andersen T, Davis R, Kreiß J, Mikosch T (eds) Handbook of financial time series. Springer, New York, pp 71–84

    Google Scholar 

  • Gnedenko BV, Kolmogorov AN (1954) Limit distributions for sums of independent random variables. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Henry M (2001) Robust automatic bandwidth for long memory. J Time Ser Anal 22: 293–316

    Article  MATH  MathSciNet  Google Scholar 

  • Hurvich CM, Deo R, Brodsky J (1998) The mean squared error of Geweke and Porter-Hudak’s estimator of the memory parameter of a long memory time series. J Time Ser Anal 19: 19–46

    Article  MATH  MathSciNet  Google Scholar 

  • Jach A, Kokoszka P (2008) Robust wavelet-domain estimation of the fractional difference parameter in heavy-tailed time series: an empirical study. Methodol Comput Appl Probab. doi:10.1007/s11009-008-9105-3

  • Kokoszka P, Maslova I, Sojka J, Zhu L (2006) Probability tails of wavelet coefficients of magnetometer records. J Geophys Res. doi:10.1029/2005JA011321

  • Lardic S, Mignon V (2004) Term premium and long-range dependence in volatility: a FIGARCH-M estimation on some Asian countries. J Emerg Market Finance 3: 1–19

    Article  Google Scholar 

  • Lee SH (2005) Forecasting conditional volatility of returns by using the relationship among returns, trading volume, and open interest in commodity futures markets. PhD thesis, Purdue University

  • Mikosch T, Stărică C (2000) Limit theory for the sample autocorrelation and extremes of a GARCH(1, 1) process. Ann Stat 28: 1427–1451

    Article  MATH  Google Scholar 

  • Moulines E, Roueff E, Taqqu MS (2008) A wavelet Whittle estimator of the memory parameter of a nonstationary Gaussian time series. Ann Stat 36: 1925–1956

    Article  MATH  MathSciNet  Google Scholar 

  • Palma W (2007) Long-memory time series: theory and methods. Wiley-Interscience, New Jersey

    Book  MATH  Google Scholar 

  • Percival DB, Walden AT (2000) Wavelet Methods for time series analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Pipiras V, Taqqu MS, Abry P (2007) Bounds for the covariance of functions of infinite variance stable random variables with applications to central limit theorems and wavelet-based estimation. Bernoulli 13: 1091–1123

    Article  MATH  MathSciNet  Google Scholar 

  • Robinson P (1991) Testing for strong serial correlation and dynamic conditional heteroskedasticity. J Econom 47: 67–84

    Article  MATH  Google Scholar 

  • Robinson P (1995) Gaussian semiparametric estimation of long range dependence. Ann Stat 23: 1630–1661

    Article  MATH  Google Scholar 

  • Samorodnitsky G, Taqqu MS (1994) Stable non-Gaussian random processes: stochastic models with infinite variance. Chapman and Hall, New York

    MATH  Google Scholar 

  • Stoev S, Taqqu MS (2005) Asymptotic self-similarity and wavelet estimation for long-range dependent FARIMA time series with stable innovations. J Time Ser Anal 26: 211–249

    Article  MATH  MathSciNet  Google Scholar 

  • Stoev S, Pipiras V, Taqqu MS (2002) Estimation of the self-similarity parameter in linear fractional stable motion. Signal Process 80: 1873–1901

    Article  Google Scholar 

  • Stoev S, Michailidis G, Taqqu MS (2006) Estimating heavy-tail exponents through max self-similarity. Techical report TR445, University of Michigan

  • Teyssière G, Abry P (2006) Wavelet analysis of nonlinear long-range dependent processes. Applications to financial time series. In: Teyssière G, Kirman A (eds) Long memory in economics. Springer, New York, pp 173–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Kokoszka.

Additional information

Research supported by NSF grants DMS-0413653 and DMS-0804165.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jach, A., Kokoszka, P. Empirical wavelet analysis of tail and memory properties of LARCH and FIGARCH models. Comput Stat 25, 163–182 (2010). https://doi.org/10.1007/s00180-009-0168-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-009-0168-6

Keywords

Mathematics Subject Classification (2000)