Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantile regression for linear models with autoregressive errors using EM algorithm

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, we consider the quantile linear regression models with autoregressive errors. By incorporating the expectation–maximization algorithm into the considered model, the iterative weighted least square estimators for quantile regression parameters and autoregressive parameters are derived. Finally, the proposed procedure is illustrated by simulations and a real data example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alhamzawi R, Yu K, Benoit DF (2012) Bayesian adaptive Lasso quantile regression. Stat Model 12:279–297

    Article  MathSciNet  MATH  Google Scholar 

  • Chatterjee S, Hadi AS (1988) Statistical analysis in linear regression. Wiley, New York

    MATH  Google Scholar 

  • Cochrane D, Orcutt GH (1949) Application of least squares regression to relationships containing auto-correlated error terms. J Am Stat Assoc 44(245):32–61

    MATH  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Book  MATH  Google Scholar 

  • Fallahpour S, Ahmed SE (2014) Shrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors. Stat Probab Lett 92(5):199–208

    Article  MathSciNet  MATH  Google Scholar 

  • Geraci M, Bottai M (2007) Quantile regression for longitudinal data using the Asymmetric Laplace distribution. Biostatistics 8:140–154

    Article  MATH  Google Scholar 

  • Graybill FA (1961) An introduction to linear statistical models. McGraw-Hill, New York

    MATH  Google Scholar 

  • Jiang Y, Li H (2014) Penalized weighted composite quantile regression in the linear regression model with heavy-tailed autocorrelated errors. J Korean Stat Soc 43(4):531–543

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker R (2005) Quantile regression. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Koenker R, Bassett J (1978) Regression quantiles. Econometrica 46(1):33–50

    Article  MathSciNet  MATH  Google Scholar 

  • Kozumi H, Kobayashi G (2011) Gibbs sampling methods for Bayesian quantile regression. J Stat Comput Simul 81:1565–1578

    Article  MathSciNet  MATH  Google Scholar 

  • Kobayashi G, Kozumi H (2013) Bayesian analysis of quantile regression for censored dynamic panel data. Comput Stat 27:359–380

    Article  MathSciNet  MATH  Google Scholar 

  • Lee J, Lund R (2004) Revisiting simple linear regression with autocorrelated errors. Biometrika 91:240–245

    Article  MathSciNet  MATH  Google Scholar 

  • Li G, Li Y, Tsai CL (2015) Quantile correlations and quantile autoregressive modeling. J Am Stat Assoc 110:246–261

    Article  MathSciNet  MATH  Google Scholar 

  • Lim Y, Oh H (2014) Variable selection in quantile regression when the models have autoregressive errors. J Korean Stat Soc 43(4):513–530

    Article  MathSciNet  MATH  Google Scholar 

  • Lin T, Pourahmadi M, Schick A (1999) Regression models with time series errors. J Time Ser Anal 20:425–433

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Bottai M (2009) Mixed-effects models for conditional quantiles with longitudinal data. Int J Biostatistics 5(1):1–28

    MathSciNet  Google Scholar 

  • McKnight SD, McKean JW, Huitema BE (2000) A double bootstrap method to analyze linear models with autoregressive error terms. Psychol Methods 5(1):87–101

    Article  Google Scholar 

  • McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques and tools. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Oakes D (1999) Direct calculation of the information matrix via the EM algorithm. J R Stat Soc Ser B 61(1):479–482

    Article  MathSciNet  MATH  Google Scholar 

  • Ramanathan R (1998) Introductory econometrics with applications. Harcourt Brace Jovanovich, Orlando

    Google Scholar 

  • Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Rao CR, Toutenburg H, Shalabh, Heumann C (2008) Linear models and generalizations: least squares and alternatives, 3rd edn. Springer, New York

    MATH  Google Scholar 

  • Reed C, Yu K (2009) Efficient Gibbs sampling for Bayesian quantile regression. Technical report, Brunel University, UK

  • Reich BJ, Fuentes M, Dunson DB (2011) Bayesian spatial quantile regression. J Am Stat Assoc 106:6–20

    Article  MathSciNet  MATH  Google Scholar 

  • Rosadi D, Filzmoser P (2016) Robust second-order least-squares estimation for regression models with autoregressive errors. Stat Pap. https://doi.org/10.1007/s00362-016-0829-9

    Google Scholar 

  • Rosadi D, Peiris S (2015) Second-order least-squares estimation for regression models with autocorrelated errors. Comput Stat 29(5):931–943

    Article  MATH  Google Scholar 

  • Tian YZ, Tian MZ, Zhu QQ (2014) Linear quantile regression based on EM algorithm. Commun Stat Theory Methods 43(16):3464–3484

    Article  MathSciNet  MATH  Google Scholar 

  • Tian YZ, Li EQ, Tian MZ (2016) Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates. Comput Stat 31(3):1031–1057

    Article  MathSciNet  MATH  Google Scholar 

  • Wu R, Wang Q (2012) Shrinkage estimation for linear regression with ARMA errors. J Stat Plan Inference 142(7):2136–2148

    Article  MathSciNet  MATH  Google Scholar 

  • Yang CY (2012) Estimation of linear regression models with serially correlated errors. J Data Sci 10(4):723–755

    MathSciNet  Google Scholar 

  • Yoon Y-J, Park C, Lee T (2013) Penalized regression models with autoregressive error terms. J Stat Comput Simul 83(9):1756–1772

    Article  MathSciNet  Google Scholar 

  • Yu K, Moyeed RA (2001) Bayesian quantile regression. Stat Probab Lett 54:437–447

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao KF, Lian H (2015) Bayesian Tobit quantile regression with single-index models. J Stat Comput Simul 85(6):1247–1263

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank editors and two reviewers for their constructive comments and valuable suggestions which have greatly improved the paper. The work is partly supported by Young academic leaders project of Henan University of Science and Technology (No. 13490008), National Natural Science Foundation of China (No. 11501167) and China Postdoctoral Science Foundation (No. 2017M610156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhu Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Tang, M., Zang, Y. et al. Quantile regression for linear models with autoregressive errors using EM algorithm. Comput Stat 33, 1605–1625 (2018). https://doi.org/10.1007/s00180-018-0811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0811-1

Keywords