Abstract.
A general class of models is developed for analyzing games with population uncertainty. Within this general class, a special class of Poisson games is defined. It is shown that Poisson games are uniquely characterized by properties of independent actions and environmental equivalence. The general definition of equilibrium for games with population uncertainty is formulated, and it is shown that the equilibria of Poisson games are invariant under payoff-irrelevant type splitting. An example of a large voting game is discussed, to illustrate the advantages of using a Poisson game model for large games.
Similar content being viewed by others
Author information
Authors and Affiliations
Additional information
Received December 1995/Revised version July 1997
Rights and permissions
About this article
Cite this article
Myerson, R. Population uncertainty and Poisson games. Game Theory 27, 375–392 (1998). https://doi.org/10.1007/s001820050079
Issue Date:
DOI: https://doi.org/10.1007/s001820050079