Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamic mean-risk optimization in a binomial model

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We consider a dynamic mean-risk problem, where the risk constraint is given by the Average Value–at–Risk. As financial market we choose a discrete-time binomial model which allows for explicit solutions. Problems where the risk constraint on the final wealth is replaced by intermediate risk constraints are also considered. The problems are solved with the help of the theory of Markov decision models and a Lagrangian approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bäuerle N, Mundt A (2005) Einführung in die Theorie und Praxis von Risikomaßen. In: Risikomanagement, Kompetenzzentrum Versicherungswissenschaften GmbH, vol 3. VVW, Karlsruhe, pp 67–99

  • Cuoco D, He H, Issaenko S (2001) Optimal dynamic trading strategies with risk limits. FAME Research Paper Series rp60, International Center for Financial Asset Management and Engineering. Available at http://ideas.repec.org/p/fam/rpseri/rp60.html

  • Emmer S, Klüppelberg C, Korn R (2001) Optimal portfolios with bounded capital at risk. Math Financ 11(4): 365–384

    Article  MATH  Google Scholar 

  • Favero G, Vargiolu T (2006) Shortfall risk minimising strategies in the binomial model: characterisation and convergence. Math Methods Oper Res 64(2): 237–253

    Article  MATH  MathSciNet  Google Scholar 

  • Föllmer H, Schied A (2004) Stochastic finance, de Gruyter Studies in Mathematics, vol 27, extended edn. Walter de Gruyter & Co., Berlin An introduction in discrete time

    Google Scholar 

  • Gabih A, Grecksch W, Wunderlich R (2005) Dynamic portfolio optimization with bounded shortfall risks. Stoch Anal Appl 23(3): 579–594

    Article  MATH  MathSciNet  Google Scholar 

  • Hernández-Lerma O, Lasserre JB (1996) Discrete-time Markov control processes. Applications of Mathematics (New York), vol 30. Springer, New York Basic optimality criteria

    Google Scholar 

  • Hinderer K (1970) Foundations of non-stationary dynamic programming with discrete time parameter. Lecture Notes in Operations Research and Mathematical Systems, vol 33. Springer, Berlin

    Google Scholar 

  • Leitner J (2006) Optimal control of favorable games with expected loss constraint. SIAM J Control Optim 45(2): 483–495 (electronic)

    Article  MathSciNet  Google Scholar 

  • Li D, Ng WL (2000) Optimal dynamic portfolio selection: multiperiod mean-variance formulation. Math Finance 10(3): 387–406

    Article  MATH  MathSciNet  Google Scholar 

  • Mundt A (2007) Dynamic risk management with markov decision processes. Ph.D. thesis, Universität Karlsruhe (TH). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007340

  • Pirvu TA (2007) Portfolio optimization under the value-at-risk constraint. Quant Financ 7(2): 125–136

    Article  MATH  MathSciNet  Google Scholar 

  • Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming. Wiley Series in probability and mathematical statistics: applied probability and statistics. Wiley-Interscience, New York

    Google Scholar 

  • Runggaldier W, Trivellato B, Vargiolu T (2002) A Bayesian adaptive control approach to risk management in a binomial model. In: Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999), Progr. Probab, vol 52. Birkhäuser, Basel, pp 243–258

  • Uryasev S, Rockafellar RT (2002) Conditional value-at-risk for general loss distributions. J Banking Financ 26(7): 1443–1471

    Article  Google Scholar 

  • Yiu KFC (2004) Optimal portfolios under a value-at-risk constraint. J Econ Dyn Control 28(7): 1317–1334 (Mathematical programming)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Bäuerle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bäuerle, N., Mundt, A. Dynamic mean-risk optimization in a binomial model. Math Meth Oper Res 70, 219–239 (2009). https://doi.org/10.1007/s00186-008-0267-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-008-0267-0

Keywords

Mathematics Subject Classification (2000)