Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

In this paper we present new concepts of efficiency for uncertain multi-objective optimization problems. We analyze the connection between the concept of minmax robust efficiency presented by Ehrgott et al. (Eur J Oper Res, 2014, doi:10.1016/j.ejor.2014.03.013) and the upper set less order relation \(\preceq _s^u\) introduced by Kuroiwa (1998, 1999). From this connection we derive new concepts of efficiency for uncertain multi-objective optimization problems by replacing the set ordering with other set orderings. Those are namely the lower set less ordering (see Kuroiwa 1998, 1999), the set less ordering (see Nishnianidze in Soobshch Akad Nauk Gruzin SSR 114(3):489–491, 1984; Young in Math Ann 104(1):260–290, 1931, doi:10.1007/BF01457934; Eichfelder and Jahn in Vector Optimization. Springer, Berlin, 2012), the certainly less ordering (see Eichfelder and Jahn in Vector Optimization. Springer, Berlin, 2012), and the alternative set less ordering (see Ide et al. in Fixed Point Theory Appl, 2014, doi:10.1186/1687-1812-2014-83; Köbis 2014). We analyze the resulting concepts of efficiency and present numerical results on the occurrence of the various concepts. We conclude the paper with a short comparison between the concepts, and an outlook to further work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barrico C, Antunes C (2006) Robustness analysis in multi-objective optimization using a degree of robustness concept. In: IEEE Congress on Evolutionary Computation. CEC 2006. IEEE Computer Society, pp 1887–1892

  • Ben-Tal A, Ghaoui LE, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton and Oxford

    MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805

    Article  MATH  MathSciNet  Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Article  MATH  MathSciNet  Google Scholar 

  • Birge J, Louveaux F (1997) Introduction to stochastic programming. Springer, New York

    MATH  Google Scholar 

  • Branke J (1998) Creating robust solutions by means of evolutionary algorithms. In: Eiben E, Bäck T, Schenauer M, Schwefel HP (eds) Parallel problem solving from nature—PPSNV, vol 1498., Lecture Notes in Computer ScienceSpringer, Berlin, pp 119–128

    Chapter  Google Scholar 

  • Chen W, Unkelbach J, Trofimov A, Madden T, Kooy H, Bortfeld T, Craft D (2012) Including robustness in multi-criteria optimization for intensity-modulated proton therapy. Phys Med Biol 57(3):591

    Article  Google Scholar 

  • Chiriaev A, Walster G (1998) Interval arithmetic specification. Technical Report

  • Deb K, Gupta H (2006) Introducing robustness in multi-objective optimization. Evol Comput 14(4):463–494

    Article  Google Scholar 

  • Dellnitz M, Witting K (2009) Computation of robust Pareto points. Int J Comput Sci Math 2(3):243–266. doi:10.1504/IJCSM.2009.027876

  • Disser Y, Müller-Hannemann M, Schnee M (2008) Multi-criteria shortest paths in time-dependent train networks. In: Experimental algorithms. Springer, pp 347–361

  • Doolittle EK, Kerivin HLM, Wiecek MM (2012) A robust multiobjective optimization problem with application to Internet routing. Department of Mathematical Sciences, Clemson University, Tech rep

  • Ehrgott M (2005) Multicriteria optimization, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Ehrgott M, Ide J, Schöbel A (2014) Minmax robustness for multi-objective optimization problems. doi:10.1016/j.ejor.2014.03.013

  • Eichfelder G, Jahn J (2012) Vector optimization problems and their solution concepts. In: Recent developments in vector optimization, Vector Optim. Springer, Berlin, pp 1–27. doi:10.1007/978-3-642-21114-0-1

  • Erfani T, Utyuzhnikov S (2012) Control of robust design in multiobjective optimization under uncertainties. Struct Multidisciplin Optim 45:247–256. 10.1007/s00158-011-0693-0

  • Fischetti M, Monaci M (2009) Light robustness. In: Ahuja R, Möhring R, Zaroliagis C (eds) Robust and online large-scale optimization, vol 5868., Lecture Notes in Computer ScienceSpringer, Berlin, pp 61–84

    Chapter  Google Scholar 

  • Fliege J, Werner R (2013) Robust multiobjective optimization & applications in portfolio optimization. Eur J Oper Res (2013). doi:10.1016/j.ejor.2013.10.028

  • Garcia R, Marin A, Mesa JA, Verastegui D, Perea F (2007) A new concept of robustness. In: Liebchen C, Ahuja RK, Mesa JA (eds) ATMOS 2007. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany

  • Goerigk M, Heße S, Müller-Hannemann M, Schmidt M, Schöbel A (2013) Recoverable robust timetable information. In: Frigioni D, Stiller S (eds) 13th Workshop on algorithmic approaches for transportation modelling, optimization, and systems, openaccess series in informatics (OASIcs), vol 33, pp 1–14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013). doi:10.4230/OASIcs.ATMOS.2013.1. http://drops.dagstuhl.de/opus/volltexte/2013/4240

  • Goerigk M, Knoth, M., Müller-Hannemann M, Schmidt M, Schöbel A (2013) The price of strict and light robustness in timetable information. Transp Sci (to appear)

  • Goerigk M, Schöbel A (2010) An empirical analysis of robustness concepts for timetabling. In: Erlebach T, Lübbecke M (eds) Proceedings of ATMOS10, OpenAccess Series in Informatics (OASIcs), vol 14, pp 100–113. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany. doi:10.4230/OASIcs.ATMOS.2010.100 http://drops.dagstuhl.de/opus/volltexte/2010/2753

  • Guerriero F, Musmanno R (2001) Label correcting methods to solve multicriteria shortest path problems. J Optim Theory Appl 111(3):589–613

    Article  MATH  MathSciNet  Google Scholar 

  • Gunawan S, Azarm S (2005) Multi-objective robust optimization using a sensitivity region concept. Struct Multidiscip Optim 29(1):50–60. doi:10.1007/s00158-004-0450-8

  • Ide J, Köbis E, Kuroiwa D, Schöbel A, Tammer C (2014) The relationship between multicriteria robustness concepts and set-valued optimization. Fixed Point Theory Appl (2014). doi:10.1186/1687-1812-2014-83. http://www.fixedpointtheoryandapplications.com/content/2014/1/83

  • Ide J, Tiedemann M, Westphal S, Haiduk F (2013) An application of deterministic and robust optimization in the wood cutting industry. Preprint-Reihe, Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Tech rep

  • Jahn J, Ha T (2011) New order relations in set optimization. J Optim Theory Appl 148(2):209–236 (2011). doi:10.1007/s10957-010-9752-8. http://dx.doi.org.qe2a-proxy.mun.ca/10.1007/s10957-010-9752-8

  • Köbis E (2014) On robust optimization: a unified approach to robustness using a nonlinear scalarizing functional and relations to set optimization. Ph.D. thesis, Martin-Luther-University Halle-Wittenberg

  • Kuroiwa D (1998) Natural criteria of set-valued optimization. Shimane University, Japan Manuscript

  • Kuroiwa D (1999) Some duality theorems of set-valued optimization with natural criteria. In: Tanaka T (ed) Proceedings of the international conference on nonlinear analysis and convex analysis. World Scientific, pp 221–228

  • Kuroiwa D, Lee GM (2012) On robust multiobjective optimization. Vietnam J Math 40(2&3):305–317

    MATH  MathSciNet  Google Scholar 

  • Martins EQV (1984) On a multicriteria shortest path problem. Eur J Oper Res 16(2):236–245

    Article  MATH  Google Scholar 

  • Müller-Hannemann M, Schnee M (2007) Finding all attractive train connections by multi-criteria pareto search. In: Algorithmic methods for railway optimization. Springer, NY, pp 246–263

  • Nishnianidze ZG (1984) Fixed points of monotone multivalued operators. Soobshch. Akad. Nauk Gruzin. SSR 114(3):489–491

    MATH  MathSciNet  Google Scholar 

  • Soyster A (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21:1154–1157

    Article  MATH  MathSciNet  Google Scholar 

  • Steuer R, Choo EU (1983) An interactive weighted tchebycheff procedure for multiple objective programming. Math Program 26(3):326–344. doi:10.1007/BF02591870

  • Tarapata Z (2007) Selected multicriteria shortest path problems: an analysis of complexity, models and adaptation of standard algorithms. Int J Appl Math Comput Sci 17(2):269–287

    MATH  MathSciNet  Google Scholar 

  • Witting K (2012) Numerical algorithms for the treatment of parametric multiobjective optimization problems and applications. Ph.D. thesis, Universität Paderborn, Paderborn

  • Witting K, Ober-Blöbaum S, Dellnitz M (2013) A variational approach to define robustness for parametric multiobjective optimization problems. J Global Optim, 57(2):331–345

  • Young RC (1931) The algebra of many-valued quantities. Math Ann 104(1):260–290. doi:10.1007/BF01457934

  • Yu H, Liu H (2013) Robust multiple objective game theory. J Optim Theory Appl 159(1):272–280

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Anita Schöbel, University of Göttingen and Christiane Tammer, University of Halle, for their idea to combine these two interesting fields of research. Furthermore, we like to thank the referees of this work for their very helpful and productive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Ide.

Appendix

Appendix

Proof of Proposition 12

Suppose that \(x^0\) is not lower set less ordered (strictly/weakly) efficient. Then there exists an \({\overline{x}}\in {\mathcal {X}}{\setminus }\{x^0\}\) s.t.

$$\begin{aligned} {f_{{\mathcal {U}}}}({\overline{x}}) + {{\mathbb {R}}^k_{\left[ \geqq />\right] }}\supseteq {f_{{\mathcal {U}}}}(x^0). \end{aligned}$$

This is equivalent to

$$\begin{aligned}&\forall \xi \in {\mathcal {U}}~ \exists \eta \in {\mathcal {U}}:~ f({\overline{x}}, \eta ) + {{\mathbb {R}}^k_{\left[ \geqq />\right] }}\ni f(x^0, \xi ) \nonumber \nonumber \\&\quad \Longleftrightarrow \forall \xi \in {\mathcal {U}}~ \exists \eta \in {\mathcal {U}}:~ f({\overline{x}}, \eta ) \in f(x^0, \xi ) - {{\mathbb {R}}^k_{\left[ \geqq />\right] }} \end{aligned}$$
(5)

Now choose \(\uplambda ^* \in {{\mathbb {R}}^k_{>}}\) arbitrary, but fixed. Hence, we obtain from (5)

$$\begin{aligned}&\forall \xi \in {\mathcal {U}}~ \exists \eta \in {\mathcal {U}}:~ {\uplambda }_{i}^* f_i({\overline{x}}, \eta ) ~[\leqq /<]~ {\uplambda }_{i}^{*} f_i(x^0, \xi ) ,~i=1, \ldots ,k,\\&\quad \Longrightarrow \left[ \inf _{\eta \in {\mathcal {U}}}/\min _{\eta \in {\mathcal {U}}}\right] {\uplambda }_{i}^{*} f_i({\overline{x}}, \eta )~[\leqq /<]~ \left[ \inf _{\xi \in {\mathcal {U}}}/\min _{\xi \in {\mathcal {U}}}\right] {\uplambda }_i^* f_i(x^0, \xi ), \\&\quad i=1, \ldots ,k. \end{aligned}$$

Since this holds for all \(i=1,\ldots ,k\), it is a contradiction to the assumption. \(\square \)

Proof of Theorem 13

Suppose that \(x^0\) is not lower set less ordered robust efficient. Then there exists \({\overline{x}}\in {\mathcal {X}}{\setminus } \{x^0\}\) s.t. \({f_{{\mathcal {U}}}}({\overline{x}})+{{\mathbb {R}}^k_\ge }\supseteq {f_{{\mathcal {U}}}}(x^0)\), i.e.,

$$\begin{aligned} \forall \xi \in {\mathcal {U}}~ \exists \eta \in {\mathcal {U}}: ~ f({\overline{x}},\eta ) \le f(x^0,\xi ). \end{aligned}$$

This implies on the one hand

$$\begin{aligned} \displaystyle \min _{\xi \in {\mathcal {U}}} f_i({\overline{x}},\xi )\leqq \displaystyle \min _{\xi \in {\mathcal {U}}} f_i(x^0,\xi ) \end{aligned}$$

for all \(i\in \{1,\ldots ,k\}\). On the other hand

$$\begin{aligned} \forall \xi \in {\mathcal {U}}~ \exists \eta \in {\mathcal {U}}: ~ \sum _{i=1}^kf_i({\overline{x}},\eta ) < \sum _{i=1}^kf_i(x^0,\xi ). \end{aligned}$$

Since \(\uplambda \in {{\mathbb {R}}^k_\geqq }\) and \(\rho >0\),

$$\begin{aligned}&\displaystyle \max _{i=1, \ldots ,k} \min _{\xi \in {\mathcal {U}}}{\uplambda }_i f_i({\overline{x}},\xi ) + \displaystyle \min _{\xi \in {\mathcal {U}}}~\rho \sum _{i=1}^kf_i({\overline{x}},\xi ) \\&\quad <\max _{i=1, \ldots ,k} \min _{\xi \in {\mathcal {U}}} {\uplambda }_i f_i(x^0,\xi ) + \displaystyle \min _{\xi \in {\mathcal {U}}}~\rho \sum _{i=1}^kf_i(x^0,\xi ), \end{aligned}$$

in contradiction to the optimality of \(x^0\) for \({{\mathcal {P}}({\mathcal {U}})}_{\uplambda ^*,\rho }^{max}\). \(\square \)

Proof of Proposition 16

Suppose that \(x^0\) is not lower set less ordered (strictly/weakly) efficient for \(P(\mathcal{{U}})\). Thus there is an element \({\overline{x}}\in {\mathcal {X}}{\setminus } \{ x^0 \}\) with

$$\begin{aligned} {f_{{\mathcal {U}}}}({\overline{x}}) + \mathbb {R}^k_{[\geqq />]} \supseteq {f_{{\mathcal {U}}}}(x^0). \end{aligned}$$

In other words,

$$\begin{aligned}&~ \forall \ \xi \in \mathcal{{U}} \; \exists \ \eta \in \mathcal{{U}}:~ f({\overline{x}}, \eta ) \in f(x^0,\xi ) - \mathbb {R}^k_{[\geqq />]} \\&\quad \Longleftrightarrow ~ \forall \ \xi \in \mathcal{{U}}~ \exists \ \eta \in \mathcal{{U}}:~ f({\overline{x}}, \eta ) ~[\leqq /<] ~ f(x^0,\xi ) \\&\quad \Longleftrightarrow ~\forall \ \xi \in \mathcal{{U}}~ \exists \ \eta \in \mathcal{{U}}: ~ f_j({\overline{x}}, \eta ) ~[\leqq /<] ~ f_j(x^0,\xi ),~j=1, \ldots ,k \\&\quad \Longleftrightarrow ~ \exists \ \eta \in \mathcal{{U}}: f_j({\overline{x}}, \eta )~ [\leqq /<] ~ \inf _{\xi \in {\mathcal {U}}}f_j(x^0,\xi ),~j=1, \ldots ,k \end{aligned}$$

and this yields

$$\begin{aligned} \inf _{\xi \in {\mathcal {U}}}f_j({\overline{x}}, \xi ) ~[\leqq /<]~ \inf _{\xi \in {\mathcal {U}}}f_j(x^0,\xi ),~j=1, \ldots ,k. \end{aligned}$$
(6)

Because \(\inf _{\xi \in {\mathcal {U}}}f_j(x^0,\xi ) \leqq \epsilon _j\) for every \(j=1, \ldots ,k,~j \ne i\), \({\overline{x}}\) is also feasible and has an equal or better objective function value (a better objective function value, respectively) than \(x^0\), contradicting the assumption that \(x^0\) is the unique optimal (an optimal, respectively) solution of \({{\mathcal {P}}({\mathcal {U}})}_{\epsilon , i}\). Note that the strict inequality in (6) holds because the existence of \(\min _{\xi \in \mathcal{{U}}} f_j(x, \xi )\) for all \(x \in {\mathcal {X}}\) and \(j=1, \ldots ,k\) is presumed. \(\square \)

Proof of Proposition 18

Suppose that \(x^0\) is not lower set less ordered (strictly/weakly) efficient. Then there exists \({\overline{x}}\in {\mathcal {X}}{\setminus } \{x^0\}\) s.t.

$$\begin{aligned}&{f_{{\mathcal {U}}}}({\overline{x}}) + \mathbb {R}^k_{[\geqq />]} \supseteq {f_{{\mathcal {U}}}}(x^0) \\&\Longleftrightarrow ~ \forall \ \xi \in {\mathcal {U}}~ \exists \ \eta \in {\mathcal {U}}:~ f({\overline{x}}, \eta ) + \mathbb {R}^k_{[\geqq />]} \ni f(x^0, \xi ) \\&\Longleftrightarrow ~ \forall \ \xi \in {\mathcal {U}}~ \exists \ \eta \in {\mathcal {U}}:~ f_i({\overline{x}}, \eta )~ [\leqq /<]~ f_i(x^0, \xi ), ~ i=1, \ldots ,k,\\&\Longrightarrow ~ \exists \ \eta \in {\mathcal {U}}:~ f_i({\overline{x}}, \eta )~ [\leqq /<]~ \inf _{\xi \in {\mathcal {U}}} f_i(x^0, \xi ) ,~ i=1, \ldots ,k,\\&\Longrightarrow ~ \inf _{\xi \in {\mathcal {U}}} f_i({\overline{x}}, \xi )~ [\leqq /<]~ \inf _{\xi \in {\mathcal {U}}} f_i(x^0, \xi ), ~ i=1, \ldots ,k, \end{aligned}$$

in contradiction to the assumption of \(x^0\) being (strictly/weakly) efficient for \(({\mathcal {O}}{\mathcal {W}}{\mathcal {I}}_{{\mathcal {P}}({\mathcal {U}})})\). \(\square \)

Proof of Theorem 23

Let \(x^0\) be (strictly/weakly/weakly) efficient for \(({{\mathcal {P}}({\mathcal {U}})}^{biobj}_{\uplambda ^*})\) with some \(\uplambda ^* \in {{{{\mathbb {R}}^k}_{[\ge />/\ge ]}}}\), i.e., there is no \({\overline{x}}\in {\mathcal {X}}{\setminus }\{x^0\}\) such that

$$\begin{aligned}&\inf _{\xi \in {\mathcal {U}}} \sum _{i=1}^k {\uplambda }_{i}^*f_i({\overline{x}}, \xi ) ~[\leqq ,<,<]~\inf \limits _{\xi \in {\mathcal {U}}} \sum \limits _{i=1}^k {\uplambda }_{i}^*f_i(x^0, \xi ) \\&\quad \text {and~} \sup _{\xi \in {\mathcal {U}}} \sum \limits _{i=1}^k {\uplambda }_{i}^*f_i({\overline{x}}, \xi ) ~[\leqq ,<,<]~ \sup \limits _{\xi \in {\mathcal {U}}} \sum \limits _{i=1}^k {\uplambda }_{i}^*f_i(x^0, \xi ). \end{aligned}$$

Now assume that \(x^0\) is not set less ordered (strictly/\(\cdot \)/weakly) efficient. Then there exists an element \({\overline{x}}\in {\mathcal {X}}{\setminus }\{x^0\}\) such that

$$\begin{aligned} {f_{{\mathcal {U}}}}({\overline{x}}) + {{\mathbb {R}}^k_{\left[ \geqq /\ge />\right] }}\supseteq {f_{{\mathcal {U}}}}(x^0) \text {~and~} {f_{{\mathcal {U}}}}({\overline{x}}) \subseteq {f_{{\mathcal {U}}}}(x^0) - {{\mathbb {R}}^k_{\left[ \geqq /\ge />\right] }}. \end{aligned}$$

This is equivalent to

$$\begin{aligned}&\exists ~{\overline{x}}\in {\mathcal {X}}{\setminus }\{x^0\}:~ \forall ~ \xi _1, \xi _2 \in {\mathcal {U}}~ \exists ~\eta _1, \eta _2 \in {\mathcal {U}}:~ f({\overline{x}}, \eta _1) + {{\mathbb {R}}^k_{\left[ \geqq /\ge />\right] }}\ni f(x^0, \xi _1) \nonumber \\&\quad \text {and~} f({\overline{x}}, \xi _2) \in f(x^0, \eta _2) - {{\mathbb {R}}^k_{\left[ \geqq /\ge />\right] }}. \end{aligned}$$
(7)

Now choose \(\uplambda ^* \in {{\mathbb {R}}^k}_{[\ge />/\ge ]}\) as in problem \({{\mathcal {P}}({\mathcal {U}})}^{biobj}_{\uplambda ^*}\). We obtain from (7)

$$\begin{aligned}&\exists ~{\overline{x}}\in {\mathcal {X}}{\setminus }\{x^0\}:~ \forall ~\xi _1, \xi _2 \in {\mathcal {U}}~ \exists ~\eta _1, \eta _2 \in {\mathcal {U}}:\\&~~~~~~~\sum \limits _{i=1}^k {\uplambda }_{i}^* f_i({\overline{x}}, \eta _1) ~[\leqq ,<,<]~ \sum \limits _{i=1}^k {\uplambda }_{i}^* f_i(x^0, \xi _1) \\&\text {~and~} \sum \limits _{i=1}^k {\uplambda }_{i}^* f_i({\overline{x}}, \xi _2) ~[\leqq ,<,<]~\sum \limits _{i=1}^k {\uplambda }_{i}^* f_i(x^0, \eta _2)\\&\Rightarrow ~\left[ \inf _{\xi \in {\mathcal {U}}}/\min _{\xi \in {\mathcal {U}}}/\min _{\xi \in {\mathcal {U}}}\right] \sum _{i=1}^k {\uplambda }_{i}^* f_i({\overline{x}}, \xi )\\&[\leqq ,<,<]~ \left[ \inf _{\xi \in {\mathcal {U}}}/\min _{\xi \in {\mathcal {U}}}/\min _{\xi \in {\mathcal {U}}}\right] \sum _{i=1}^k {\uplambda }_{i}^* f_i(x^0, \xi ) \\&\text {~and~} \left[ \sup _{\xi \in {\mathcal {U}}}/\max _{\xi \in {\mathcal {U}}}/\max _{\xi \in {\mathcal {U}}}\right] \sum _{i=1}^k {\uplambda }_{i}^* f_i({\overline{x}}, \xi ) \\&[\leqq ,<,<]~ \left[ \sup _{\xi \in {\mathcal {U}}}/\max _{\xi \in {\mathcal {U}}}/\max _{\xi \in {\mathcal {U}}}\right] \sum _{i=1}^k {\uplambda }_{i}^* f_i(x^0, \xi ). \end{aligned}$$

The last two strict inequalities hold because the minimum and maximum exist. But this is a contradiction to the assumption. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ide, J., Köbis, E. Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations. Math Meth Oper Res 80, 99–127 (2014). https://doi.org/10.1007/s00186-014-0471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-014-0471-z

Keywords