Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mean–variance optimal trading problem subject to stochastic dominance constraints with second order autoregressive price dynamics

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

The efficient modeling of execution price path of an asset to be traded is an important aspect of the optimal trading problem. In this paper an execution price path based on the second order autoregressive process is proposed. The proposed price path is a generalization of the existing first order autoregressive price path in literature. Using dynamic programming method the analytical closed form solution of unconstrained optimal trading problem under the second order autoregressive process is derived. However in order to incorporate non-negativity constraints in the problem formulation, the optimal static trading problems under second order autoregressive price process are formulated. For a risk neutral investor, the optimal static trading problem of minimizing expected execution cost subject to non-negativity constraints is formulated as a quadratic programming problem. Whereas, for a risk averse investor the variance of execution cost is considered as a measure for the timing risk, and the mean–variance problem is formulated. Moreover, the optimal static trading problem subject to stochastic dominance constraints with mean–variance static trading strategy as the reference strategy is studied. Using Static approximation method the algorithm to solve proposed optimal static trading problems is presented. With numerical illustrations conducted on simulated data and the real market data, the significance of second order autoregressive price path, and the optimal static trading problems is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almgren R, Chriss N (2000) Optimal execution of portfolio transactions. J Risk 3:5–39

    Article  Google Scholar 

  • Bertsimas D, Hummel P, Lo A (1999) Optimal control of execution costs for portfolios. Comput Sci Eng 1:40–53

    Article  Google Scholar 

  • Bertsimas D, Lo A (1998) Optimal control of execution costs. J Financ Mark 1:1–50

    Article  Google Scholar 

  • Beutner E (2007) Mean–variance hedging under transaction costs. Math Method Oper Res 65:539–557

    Article  MathSciNet  MATH  Google Scholar 

  • Cai X, Teo K, Zhou XY (2000) Portfolio optimization under a minimax rule. Manag Sci 46:957–972

    Article  MATH  Google Scholar 

  • Dentcheva D, Ruszczynski A (2003) Optimization with stochastic dominance constraints. SIAM J Optim 14:548–566

    Article  MathSciNet  MATH  Google Scholar 

  • Dentcheva D, Ruszczynski A (2006) Portfolio optimization with stochastic dominance constraints. J Bank Financ 30:433–451

    Article  MATH  Google Scholar 

  • Gatheral G, Schied A (2011) Optimal trade execution under geometric Brownian motion in the Almgren and Chriss framework. Int J Theor Appl Financ 14:353–368

    Article  MathSciNet  MATH  Google Scholar 

  • Huberman G, Stanzl W (2005) Optimal liquidity trading. Rev Financ 9:165–200

    Article  MATH  Google Scholar 

  • Khemchandani R, Bhardwaj A, Chandra S (2016) Single asset optimal trading strategies with stochastic dominance constraints. Ann Oper Res. doi:10.1007/s10479-014-1697-0

    MathSciNet  MATH  Google Scholar 

  • Khemchandani R, Chandra S (2014) Efficient trading frontier: a shortage function approach. Optimization 63:1533–1548

    Article  MathSciNet  MATH  Google Scholar 

  • Khemchandani R, Gupta N, Chaudhary A, Chandra S (2013) Optimal execution with weighted impact functions: a quadratic programming approach. Optim Lett 7:575–592

    Article  MathSciNet  MATH  Google Scholar 

  • Kissell R, Glantz M (2007) Optimal trading strategies: quantitative approaches for managing market impact and trading risk. Prentice Hall of India, New Delhi

    Google Scholar 

  • Konno H, Yamazaki H (1991) Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market. Manag Sci 37:519–0531

    Article  Google Scholar 

  • Marcek D (1998) Stock price prediction using autoregressive models and signal processing procedures. In: Proceedings of the 16th conference MME98, pp 114–121

  • Marcek D (2000) Stock price forecasting: autoregressive modelling and fuzzy neural network. Mathw Soft Comput 7:139–148

    MATH  Google Scholar 

  • Markowitz HM (1952) Portfolio selection. J Financ 7:77–91

    Google Scholar 

  • Moazeni S (2011) A note on the dynamic liquidity trading problem with a mean–variance objective. Optim Lett 5:113–124

    Article  MathSciNet  MATH  Google Scholar 

  • Moazeni S, Coleman TF, Li Y (2013) Optimal execution under jump models for uncertain price impact. J Comput Financ 16:35–78

    Article  Google Scholar 

  • Roman D, Darby-Dowman K, Mitra G (2006) Portfolio construction based on stochastic dominance and target return distributions. Math Program 108:541–569

    Article  MathSciNet  MATH  Google Scholar 

  • Rudoy MB (2009) Multistage mean–variance portfolio selection in cointegrated vector autoregressive systems. Ph.D. thesis. http://www.rle.mit.edu/dspg/documents/mbsPhDFinal_Feb09

  • Rudoy MB, Rohrs CE (2008) Optimal mean–variance portfolio construction in cointegrated vector autoregressive systems. In: American control conference Westin Seattle Hotel, Seattle, Washington, 11–13 June 2008

  • Whitmore GA, Findlay MC (1978) Stochastic dominance: an approach to decision-making under risk. D.C. Heath, Lexington

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Prof. Suresh Chandra, former emeritus professor of Indian Institute of Technology Delhi, for his continuous encouragement and helpful suggestions in the preparation of this paper. Moreover, authors are grateful to the editor and two anonymous reviewers for their valuable suggestions and comments which helped improve the paper to great extent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmaraja Selvamuthu.

Appendices

Appendix 1

In this Appendix, proof of Proposition 1 is presented.

Proof

We use method of mathematical induction to prove (7) and (8) for \(t=0,1,\ldots ,T-1\).

In the last trading period T, optimal strategy is to execute all the remaining shares to complete the trading. Thus

$$\begin{aligned} S_T= & {} W_T \nonumber \\= & {} \delta _{P,0}P_{T-1}+\delta _{PP,0}P_{T-2}+\delta _{W,0}W_{T}+\delta _{X,0}X_{T}+\delta _{XX,0}X_{T-1} \end{aligned}$$
(55)

where \(\delta _{P,0}=0,~\delta _{PP,0}=0,~\delta _{W,0}=1,~\delta _{X,0}=0,~\delta _{XX,0}=0\).

By (5), we get

$$\begin{aligned}&V_T(P_{T-1},P_{T-2},X_T,X_{T-1},W_T) \nonumber \\&\quad =u_1P_{T-1}W_T+u_2P_{T-2}W_T+\theta W_T^2+\gamma X_TW_T \nonumber \\&\quad =a_0P_{T-1}^2+b_0P_{T-2}^2+c_0W_{T}^2+d_0X_{T}^2+e_0X_{T-1}^2+f_0P_{T-1}P_{T-2}+g_0P_{T-1}W_{T}\nonumber \\&\qquad +h_0P_{T-1}X_{T} +i_0P_{T-1}X_{T-1}+j_0P_{T-2}W_{T}+k_0P_{T-2}X_{T}+l_0P_{T-2}X_{T-1}\nonumber \\&\qquad +m_0W_{T}X_{T}+n_0W_{T}X_{T-1} +o_0X_{T}X_{T-1}+p_0, \end{aligned}$$
(56)

where \(a_0=0,~b_0=0,~c_0=\theta ,~d_0=0,~e_0=0,~f_0=0,~g_0=u_1,~h_0=0,~i_0=0,~j_0=u_2,~k_0=0,~l_0=0\), \(m_0=\gamma ,~n_0=0,~o_0=0,~p_0=0\).

Let following equation holds true.

$$\begin{aligned}&V_{T-t+1}(P_{T-t},P_{T-t-1},X_{T-t+1},X_{T-t},W_{T-t+1})\nonumber \\&\quad =a_{t-1}P_{T-t}^2+b_{t-1}P_{T-t-1}^2+c_{t-1}W_{T-t+1}^2+d_{t-1}X_{T-t+1}^2+e_{t-1}X_{T-t}^2\nonumber \\&\qquad +f_{t-1}P_{T-t}P_{T-t-1} +g_{t-1}P_{T-t}W_{T-t+1}+h_{t-1}P_{T-t}X_{T-t+1}\nonumber \\&\qquad +i_{t-1}P_{T-t}X_{T-t}+j_{t-1}P_{T-t-1}W_{T-t+1} +k_{t-1}P_{T-t-1}X_{T-t+1}+l_{t-1}P_{T-t-1}X_{T-t}\nonumber \\&\qquad +m_{t-1}W_{T-t+1}X_{T-t+1}+n_{t-1}W_{T-t+1}X_{T-t} +o_{t-1}X_{T-t+1}X_{T-t}+p_{t-1} \end{aligned}$$
(57)

By Eq. (6), we have

$$\begin{aligned}&V_{T-t}(P_{T-t-1},P_{T-t-2},X_{T-t},X_{T-t-1},W_{T-t}) \nonumber \\&\quad =\min _{S_{T-t}}~E_{T-t}[P_{T-t}S_{T-t}+V_{T-t+1}(P_{T-t},P_{T-t-1},X_{T-t+1},X_{T-t},W_{T-t+1})] \nonumber \\&\qquad (\hbox {Putting value of }V_{T-t+1}\hbox { from Eq.} \hbox { (57)}) \nonumber \\&\quad =\min _{S_{T-t}}~E_{T-t}[P_{T-t}S_{T-t}+a_{t-1}P_{T-t}^2+b_{t-1}P_{T-t-1}^2+c_{t-1}W_{T-t+1}^2\nonumber \\&\qquad +d_{t-1}X_{T-t+1}^2 +e_{t-1}X_{T-t}^2+f_{t-1}P_{T-t}P_{T-t-1}+g_{t-1}P_{T-t}W_{T-t+1} \nonumber \\&\qquad +h_{t-1}P_{T-t}X_{T-t+1}+i_{t-1}P_{T-t}X_{T-t} +j_{t-1}P_{T-t-1}W_{T-t+1} \nonumber \\&\qquad +k_{t-1}P_{T-t-1}X_{T-t+1}+l_{t-1}P_{T-t-1}X_{T-t}+m_{t-1}W_{T-t+1}X_{T-t+1}\nonumber \\&\qquad +n_{t-1}W_{T-t+1}X_{T-t}+o_{t-1}X_{T-t+1}X_{T-t}+p_{t-1} ] \nonumber \\&\qquad (\hbox {Using Eqs. (3) and (4), first we put values of }P_{T-t} \hbox { and }X_{T-t+1}\hbox {, respectively.} \nonumber \\&\qquad \hbox {Further we use relation }W_{T-t+1}=W_{T-t}-S_{T-t},\hbox { and rearrange terms as a} \nonumber \\&\qquad \hbox { quadratic function in }S_{T-k}.) \nonumber \\&\quad =\min _{S_{T-t}}~E_{T-t}\Big [\Big \{\theta +a_{t-1}\theta ^2+c_{t-1}-g_{t-1}\theta \Big \}S_{T-t}^2 +\Big \{(2a_{t-1}u_1\theta +f_{t-1}\theta \nonumber \\&\qquad +u_1-j_{t-1}-g_{t-1}u_1)P_{T-t-1}+(2a_{t-1}u_2\theta +u_2-g_{t-1}u_2) P_{T-t-2}\gamma \nonumber \\&\qquad +(g_{t-1}\theta -2c_{t-1})W_{T-t}+(2a_{t-1}\theta +\gamma -g_{t-1}\gamma +i_{t-1}\theta -m_{t-1}\rho _1-n_{t-1})X_{T-t}\nonumber \\&\qquad +(h_{t-1}\theta \rho _2-m_{t-1}\rho _2)X_{T-t-1}\Big \}S_{T-t}+(a_{t-1}u_1^2+b_{t-1}+f_{t-1}u_1)P_{T-t-1}^2\nonumber \\&\qquad +(a_{t-1}u_2^2)P_{T-t-2}^2+(c_{t-1})W_{T-t}^2+(a_{t-1}\gamma ^2+d_{t-1}\rho _1^2+e_{t-1}\nonumber \\&\qquad +h_{t-1}\gamma \rho _1+i_{t-1}\gamma +o_{t-1}\rho _1)X_{T-t}^2 +(d_{t-1}\rho _2^2)X_{T-t-1}^2+(2a_{t-1}u_1u_2\nonumber \\&\qquad +f_{t-1}u_2)P_{T-t-1}P_{T-t-2} +(g_{t-1}u_1+j_{t-1})P_{T-t-1}W_{T-t}+(2a_{t-1}u_1\gamma +f_{t-1}\gamma \nonumber \\ {}&\qquad +h_{t-1}u_1\rho _1+i_{t-1}u_1+k_{t-1}\rho _1+l_{t-1})P_{T-t-1}X_{T-t}\nonumber \\&\qquad +(h_{t-1}u_1\rho _2+k_{t-1}\rho _2)P_{T-t-1}X_{T-t-1}\nonumber \\ {}&\qquad +(g_{t-1}u_2)P_{T-t-2}W_{T-t} +(2a_{t-1}u_2\gamma +h_{t-1}u_2\rho _1+i_{t-1}u_2)P_{T-t-2}X_{T-t}\nonumber \\ {}&\qquad +(h_{t-1}u_2\rho _2)P_{T-t-2}X_{T-t-1} +(g_{t-1}\gamma +m_{t-1}\rho _1+n_{t-1})W_{T-t}X_{T-t}\nonumber \\ {}&\qquad +(m_{t-1}\rho _2)W_{T-t}X_{T-t-1}+(2d_{t-1}\rho _1\rho _2+h_{t-1}\gamma \rho _2\nonumber \\&\qquad +o_{t-1}\rho _2)X_{T-t}X_{T-t-1}+(a_{t-1}\sigma ^2_{\epsilon }+d_{t-1}\sigma ^2_{\eta }+p_{t-1})\Big ] \end{aligned}$$
(58)

Thus at time period \(T-t\) the unrestricted minimization of (58) occurs at following point:

$$\begin{aligned} S_{T-t}= & {} \Big (\frac{g_{t-1}u_1+j_{t-1}-u_1-f_{t-1}\theta -2a_{t-1}u_1\theta }{2(\theta +a_{t-1}\theta ^2+c_{t-1}-g_{t-1}\theta )}\Big )P_{T-t-1}\nonumber \\&+\Big (\frac{g_{t-1}u_2-2a_{t-1}u_2\theta -u_2}{2(\theta +a_{t-1}\theta ^2+c_{t-1}-g_{t-1}\theta )}\Big )P_{T-t-2}\nonumber \\&+\Big (\frac{2c_{t-1}-g_{t-1}\theta }{2(\theta +a_{t-1}\theta ^2+c_{t-1}-g_{t-1}\theta )}\Big )W_{T-t}\nonumber \\&+\Big (\frac{n_{t-1}+m_{t-1}\rho _1-i_{t-1}\theta +g_{t-1}\gamma -2a_{t-1}\theta \gamma -\gamma -h_{t-1}\theta \rho _1}{2(\theta +a_{t-1}\theta ^2+c_{t-1}-g_{t-1}\theta )}\Big )X_{T-t}\nonumber \\&+\Big (\frac{m_{t-1}\rho _2-h_{t-1}\theta \rho _1}{2(\theta +a_{t-1}\theta ^2+c_{t-1}-g_{t-1}\theta )}\Big )X_{T-t-1} \nonumber \\= & {} \delta _{P,t}P_{T-t-1}+\delta _{PP,t}P_{T-t-2}+\delta _{W,t}W_{T-t}+\delta _{X,t}X_{T-t}+\delta _{XX,t}X_{T-t-1}. \nonumber \\ \end{aligned}$$
(59)

Putting point of minima \(S_{T-t}\) from (59) into (58), we get

$$\begin{aligned} V_{T-t}= & {} a_tP_{T-t-1}^2+b_tP_{T-t-2}^2+c_tW_{T-t}^2+d_tX_{T-t}^2+e_tX_{T-t-1}^2+f_tP_{T-t-1}P_{T-t-2}\nonumber \\&+g_tP_{T-t-1}W_{T-t} +h_tP_{T-t-1}X_{T-t}+i_tP_{T-t-1}X_{T-t-1}+j_tP_{T-t-2} W_{T-t}\nonumber \\&+k_tP_{T-t-2}X_{T-t}+l_tP_{T-t-2}X_{T-t-1} +m_tW_{T-t}X_{T-t}+n_tW_{T-t}X_{T-t-1}\nonumber \\ {}&+o_tX_{T-t}X_{T-t-1}+p_t. \end{aligned}$$
(60)

In view of (55)–(60), Proposition 1 is proved. \(\square \)

Appendix 2

In this Appendix, the proof of Lemma 1 is presented.

Proof

First we prove the Eq. (13) of Lemma 1.

Consider the case when t is an even positive integer.

That is let \(t=2m\) for some positive integer m.

$$\begin{aligned} u_1L_t+u_2L_{t-1}= & {} u_1L_{2m}+u_2L_{2m-1}\\= & {} u_1\Big [\displaystyle \sum ^{m}_{k=0}{2m-k\atopwithdelims ()k}u_1^{2m-2k}u_2^k\Big ]+u_2\Big [\displaystyle \sum ^{m-1}_{k=0}{2m-1-k\atopwithdelims ()k}u_1^{2m-1-2k}u_2^k\Big ]\\= & {} \Big [\displaystyle \sum ^{m}_{k=0}{2m-k\atopwithdelims ()k}u_1^{2m+1-2k}u_2^k\Big ]+\Big [\displaystyle \sum ^{m-1}_{k=0}{2m-1-k\atopwithdelims ()k}u_1^{2m-1-2k}u_2^{k+1}\Big ]\\= & {} \Big [\displaystyle \sum ^{m}_{k=0}{2m-k\atopwithdelims ()k}u_1^{2m+1-2k}u_2^k\Big ]+\Big [\displaystyle \sum ^{m}_{k=1}{2m-k\atopwithdelims ()k-1}u_1^{2m+1-2k}u_2^{k}\Big ]\\= & {} \Big [u_1^{2m+1}+\displaystyle \sum ^{m}_{k=1}{2m-k\atopwithdelims ()k}u_1^{2m+1-2k}u_2^k\Big ]+\Big [\displaystyle \sum ^{m}_{k=1}{2m-k\atopwithdelims ()k-1}u_1^{2m+1-2k}u_2^{k}\Big ]\\= & {} u_1^{2m+1}+\displaystyle \sum ^{m}_{k=1}\Big [{2m-k\atopwithdelims ()k}+{2m-k\atopwithdelims ()k-1}\Big ]u_1^{2m+1-2k}u_2^k\\= & {} u_1^{2m+1}+\displaystyle \sum ^{m}_{k=1}{2m+1-k\atopwithdelims ()k}u_1^{2m+1-2k}u_2^k\\= & {} \displaystyle \sum ^{m}_{k=0}{2m+1-k\atopwithdelims ()k}u_1^{2m+1-2k}u_2^k\\= & {} L_{2m+1}\\= & {} L_{t+1} \end{aligned}$$

Similarly Eq. (13) can be proved for the case when t is an odd positive integer.

Similar to the above proof, the proof of Eq. (14) follows. \(\square \)

Appendix 3

The proof of Lemma 2 is given in this Appendix C.

Proof

We will use method of mathematical induction to prove the Eq. (15) of Lemma 2.

Consider

$$\begin{aligned} X_2= & {} \rho _1X_1+\rho _2X_{0}+\eta _2\\= & {} X_1(M_1)+\rho _2X_{0}(M_0)+\displaystyle \sum _{k=0}^{2-2}M_{k}\eta _{2-k}. \end{aligned}$$

Thus Eq. (15) is true for \(t=2\).

Let Eq. (15) be true for all t such that \(2\le t\le m\) for some positive integer m where \(2<m<T\).

To prove Lemma 2, next we need to show that Eq. (15) is true for \(t=m+1\).

$$\begin{aligned} X_{m+1}= & {} \rho _1X_m+\rho _2X_{m-1}+\eta _{m+1}\\= & {} \rho _1\Big [X_1(M_{m-1})+\rho _2X_{0}(M_{m-2})+\displaystyle \sum _{k=0}^{m-2}M_{k}\eta _{m-k}\Big ] \\&+\rho _2\Big [X_1(M_{m-2})+\rho _2X_{0}(M_{m-3})+\displaystyle \sum _{k=0}^{m-3}M_{k}\eta _{m-1-k}\Big ]+\eta _{m+1}\\= & {} X_1(\rho _1M_{m-1}+\rho _2M_{m-2})+\rho _2X_{0}(\rho _1M_{m-2}+\rho _2M_{m-3})\\&+\Big [(\rho _1M_0)\eta _m+\displaystyle \sum _{k=1}^{m-2}(\rho _1M_k+\rho _2M_{k-1})\eta _{m-k}\Big ]+\eta _{m+1}\\&(\hbox {By Eq. (14) of Lemma 1 and by equation}~~\rho _1M_0=M_1)\\= & {} X_1(M_{m})+\rho _2X_{0}(M_{m-1})+\Big [M_1\eta _m+\displaystyle \sum _{k=1}^{m-2}M_{k+1}\eta _{m-k}\Big ]+\eta _{m+1}\\= & {} X_1(M_{m})+\rho _2X_{0}(M_{m-1})+\displaystyle \sum _{k=0}^{m-1}M_{k}\eta _{m+1-k} \end{aligned}$$

Thus claim is proved. \(\square \)

Appendix 4

In this Appendix, proof of Lemma 3 is presented.

Proof

The Eq. (16) of Lemma 3 is obvious.

We will use method of mathematical induction to prove the Eq. (17) of Lemma 3.

Consider

$$\begin{aligned} P_2= & {} u_1P_1+u_2P_{0}+\theta {\hat{S}}_2+\gamma X_2+\epsilon _2\\&(\hbox {Putting values of }P_2\hbox { and }X_2\hbox { from Eqs. (3) and (4), respectively, we get})\\= & {} u_1(u_1P_0+u_2P_{-1}+\theta {\hat{S}}_1+\gamma X_1+\epsilon _1)+u_2P_{0}+\theta {\hat{S}}_2+\gamma (\rho _1X_1+\rho _2X_{0}+\eta _2)+\epsilon _2\\= & {} P_0(L_2)+u_2P_{-1}(L_1)+\gamma X_1(L_0M_1+L_1M_0)+\gamma \rho _2X_{0}(L_0M_0)\\&+(L_0\epsilon _2+L_1\epsilon _1)+\gamma (L_0M_0\eta _2) \end{aligned}$$

Thus Eq. (17) is true for \(t=2\).

Let Eq. (17) be true for all t such that \(2\le t\le m\) for some positive integer m where \(2<m<T\).

To prove Lemma 3, next we need to show that Eq. (17) is true for \(t=m+1\).

$$\begin{aligned} P_{m+1}= & {} u_1P_m+u_2P_{m-1}+\theta {\hat{S}}_{m+1}+\gamma X_{m+1}+\epsilon _{m+1}\\= & {} u_1\left[ P_0(L_m)+u_2P_{-1}(L_{m-1})+\gamma X_1\left( \displaystyle \sum _{k=0}^{m-1}L_kM_{m-1-k}\right) +\gamma \rho _2X_{0}\left( \displaystyle \sum _{k=0}^{m-2}L_kM_{m-2-k}\right) \right. \\&\left. +\theta \left( \displaystyle \sum _{k=0}^{m-1}L_k{\hat{S}}_{m-k}\right) +\left( \displaystyle \sum _{k=0}^{m-1}L_k\epsilon _{m-k}\right) + \gamma \left\{ \displaystyle \sum _{k=0}^{m-2}\left( \displaystyle \sum _{l=0}^{k}L_lM_{k-l}\right) \eta _{m-k}\right\} \right] \\&+u_2\left[ P_0(L_{m-1})+u_2P_{-1}(L_{m-2})+\gamma X_1\left( \displaystyle \sum _{k=0}^{m-2}L_kM_{m-2-k}\right) +\gamma \rho _2X_{0}\left( \displaystyle \sum _{k=0}^{m-3}L_kM_{m-3-k}\right) \right. \\&\left. +\theta \left( \displaystyle \sum _{k=0}^{m-2}L_k{\hat{S}}_{m-1-k}\right) +\left( \displaystyle \sum _{k=0}^{m-2}L_k\epsilon _{m-1-k}\right) + \gamma \left\{ \displaystyle \sum _{k=0}^{m-3}\left( \displaystyle \sum _{l=0}^{k}L_lM_{k-l}\right) \eta _{m-1-k}\right\} \right] \\&+\theta {\hat{S}}_{m+1}+\gamma X_{m+1}+\epsilon _{m+1}\\= & {} P_0(u_1L_m+u_2L_{m-1})+u_2P_{-1}(u_1L_{m-1}+u_2L_{m-2})+\gamma X_1\left\{ (u_1L_0)M_{m-1}\right. \\&\left. +\displaystyle \sum _{k=1}^{m-1}(u_1L_k+u_2L_{k-1})M_{m-1-k}\right\} +\gamma \rho _2 X_{0}\left\{ (u_1L_0)M_{m-2}\right. \\&\left. +\displaystyle \sum _{k=1}^{m-2}(u_1L_k+u_2L_{k-1})M_{m-2-k}\right\} +\theta \left\{ (u_1L_0){\hat{S}}_m+\displaystyle \sum _{k=1}^{m-1} (u_1L_k+u_2L_{k-1}){\hat{S}}_{m-k}\right\} \\&+\left\{ (u_1L_0)\epsilon _m+\displaystyle \sum _{k=1}^{m-1}(u_1L_k+u_2L_{k-1})\epsilon _{m-k}\right\} \\ \end{aligned}$$
$$\begin{aligned}&\quad \quad +\gamma \left[ (u_1L_0)M_0\eta _m +\displaystyle \sum _{k=1}^{m-2}\left\{ (u_1L_0)M_k+\displaystyle \sum _{l=1}^{k}(u_1L_l+u_2L_{l-1})M_{k-l}\right\} \eta _{m-k}\right] +\theta {\hat{S}}_{m+1}\\&\quad \quad +\gamma X_{m+1}+\epsilon _{m+1}\\&\quad (\hbox {By using Eq. (13) of Lemma 1 and the equation}~~u_1L_0=L_1.)\\= & {} P_0(L_{m+1})+u_2P_{-1}(L_{m})+\gamma X_1\left\{ L_1M_{m-1}+\displaystyle \sum _{k=1}^{m-1}L_{k+1}M_{m-1-k}\right\} +\gamma \rho _2 X_{0}\left\{ L_1M_{m-2}\right. \\&\left. +\displaystyle \sum _{k=1}^{m-2}L_{k+1}M_{m-2-k}\right\} +\theta \left\{ L_1{\hat{S}}_m+\displaystyle \sum _{k=1}^{m-1}L_{k+1}{\hat{S}}_{m-k}\right\} +\left\{ L_1\epsilon _m+\displaystyle \sum _{k=1}^{m-1}L_{k+1}\epsilon _{m-k}\right\} \\&+\gamma \left[ (L_1M_0)\eta _m+\displaystyle \sum _{k=1}^{m-2}\left\{ L_1M_k+\displaystyle \sum _{l=1}^{k}L_{l+1}M_{k-l}\right\} \eta _{m-k}\right] +\theta {\hat{S}}_{m+1}+\gamma X_{m+1}+\epsilon _{m+1}\\&(\hbox {Simplifying above equation further and by using Eq. (15) of Lemma 2.})\\= & {} P_0(L_{m+1})+u_2P_{-1}(L_{m})+\gamma X_1\left\{ \displaystyle \sum _{k=1}^{m}L_{k}M_{m-k}\right\} +\gamma \rho _2 X_{0}\left\{ \displaystyle \sum _{k=1}^{m-1}L_{k}M_{m-1-k}\right\} \\&+\theta \left\{ \displaystyle \sum _{k=1}^{m}L_{k}{\hat{S}}_{m+1-k}\right\} +\left\{ \displaystyle \sum _{k=1}^{m}L_{k}\epsilon _{m+1-k}\right\} +\gamma \left[ \displaystyle \sum _{k=0}^{m-2} \left\{ \displaystyle \sum _{l=0}^{k}L_{l+1}M_{k-l}\right\} \eta _{m-k}\right] \\&+\theta {\hat{S}}_{m+1}+\gamma \left[ X_1(M_{m})+\rho _2X_{0}(M_{m-1})+\displaystyle \sum _{k=0}^{m-1}M_{k}\eta _{m+1-k}\right] +\epsilon _{m+1}\\= & {} P_0(L_{m+1})+u_2P_{-1}(L_{m})+\gamma X_1\left\{ \displaystyle \sum _{k=0}^{m}L_{k}M_{m-k}\right\} +\gamma \rho _2 X_{0}\left\{ \displaystyle \sum _{k=0}^{m-1}L_{k}M_{m-1-k}\right\} \\&+\theta \left\{ \displaystyle \sum _{k=0}^{m}L_{k}{\hat{S}}_{m+1-k}\right\} +\left\{ \displaystyle \sum _{k=0}^{m}L_{k}\epsilon _{m+1-k}\right\} +\gamma \left[ \displaystyle \sum _{k=0}^{m-1} \left\{ \displaystyle \sum _{l=0}^{k}L_{l}M_{k-l}\right\} \eta _{m+1-k}\right] \end{aligned}$$

Thus Lemma 3 is proved. \(\square \)

Appendix 5

The proof of Lemma 4 is presented in this Appendix.

Proof

We use method of mathematical induction to prove Eq. (23) of Lemma 4.

Consider

$$\begin{aligned} Cov_1(X_3,X_2)= & {} Cov_1(\rho _1 X_2+\rho _2 X_1+\eta _3,X_2) \\= & {} \rho _1 Var_1(X_2). \end{aligned}$$

Thus Eq. (23) is true for \(t=3\).

Let Eq. (23) be true for all t such that \(3\le t\le m\) for some positive integer m where \(3<m<T\).

To prove Lemma 4, next we need to show that Eq. (23) is true for \(t=m+1\).

$$\begin{aligned}&Cov_1(X_{m+1},X_{m})\\&\quad =Cov_1(\rho _1 X_m+\rho _2 X_{m-1}+\eta _{m+1},X_m) \\&\quad = \rho _1Var_1(X_m)+\rho _2Cov_1(X_m,X_{m-1})\\&\qquad \hbox {(By the assumption that Eq. (23) is true for all} t \hbox { such that } 3\le t\le m)\\&\quad = \rho _1Var_1(X_m)+\rho _2[\rho _1\{Var_1(X_{m-1})+\rho _2Var_1(X_{m-2})+\cdots +\rho _2^{m-3}Var_1(X_2)\}]\\&\quad = \rho _1[Var_1(X_m)+\rho _2Var_1(X_{m-1})+\rho _2^2Var_1(X_{m-2})+\cdots +\rho _2^{m-2}Var_1(X_2)] \end{aligned}$$

Thus Lemma 4 is proved. \(\square \)

Appendix 6

The proof of Lemma 5 is presented in this Appendix.

Proof

We consider the Eq. (24) of Lemma 5 as the statement corresponding to t. With this we prove (24) by the method of mathematical induction.

First we will show that Eq. (24) is true for \(t=4\).

For \(t=4\), we have \(2\le k\le 4-2\), that is \(k=2\).

$$\begin{aligned} Cov_1(X_4,X_{4-2})= & {} Cov_1(X_4,X_2)\\= & {} Cov_1(\rho _1X_3+\rho _2X_2+\eta _4,X_2)\\= & {} \rho _1Cov_1(X_3,X_2)+\rho _2Cov_1(X_2,X_2)\\= & {} M_1Cov_1(X_3,X_2)+\rho _2M_0Var_1(X_2) \end{aligned}$$

Assume that Eq. (24) is true for \(4\le t\le m\) for some positive integer m where \(4<m<T\).

In particular, we have following equations.

For \(t=m\) and corresponding \(2\le k\le m-2\)

$$\begin{aligned} Cov_1(X_{m},X_{m-k})=M_{k-1}Cov_1(X_{m-k+1},X_{m-k})+\rho _2M_{k-2}Var_1(X_{m-k}) \end{aligned}$$
(61)

For \(t=m-1\) and corresponding \(2\le k\le m-3\)

$$\begin{aligned} Cov_1(X_{m-1},X_{m-1-k})=M_{k-1}Cov_1(X_{m-k},X_{m-1-k})+\rho _2M_{k-2}Var_1(X_{m-1-k}). \end{aligned}$$
(62)

To prove the Lemma 5, next we need to show that Eq. (24) is true for \(t=m+1\).

That is we need to show that \(\forall 2\le k\le m-1\).

$$\begin{aligned} Cov_1(X_{m+1},X_{m+1-k})=M_{k-1}Cov_1(X_{m+1-k+1},X_{m+1-k})+\rho _2M_{k-2}Var_1(X_{m+1-k}). \end{aligned}$$
(63)

We prove Eq. (63) separately for \(k=2\), \(k=3\) and for \(4\le k\le m-1\).

For \(k=2\), consider

$$\begin{aligned} Cov_1(X_{m+1},X_{m+1-2})= & {} Cov_1(X_{m+1},X_{m-1}) \nonumber \\= & {} Cov_1(\rho _1X_{m}+\rho _2X_{m-1}+\eta _{m+1},X_{m-2}) \nonumber \\= & {} \rho _1Cov_1(X_m,X_{m-1})+\rho _2Cov_1(X_{m-1},X_{m-1}) \nonumber \\= & {} M_1Cov_1(X_m,X_{m-1})+\rho _2M_0Var_1(X_{m-1}). \end{aligned}$$
(64)

For \(k=3\), consider

$$\begin{aligned}&Cov_1(X_{m+1},X_{m+1-3})\nonumber \\&\quad =Cov_1(X_{m+1},X_{m-2}) \nonumber \\&\quad =Cov_1(\rho _1X_{m}+\rho _2X_{m-1}+\eta _{m+1},X_{m-2}) \nonumber \\&\quad =\rho _1Cov_1(X_m,X_{m-2})+\rho _2Cov_1(X_{m-1},X_{m-2}) \nonumber \\&\quad =\rho _1Cov_1(\rho _1X_{m-1}+\rho _2X_{m-2}+\eta _m,X_{m-2})+\rho _2Cov_1(X_{m-1},X_{m-2}) \nonumber \\&\quad =\rho _1[\rho _1Cov_1(X_{m-1},X_{m-2})+\rho _2Cov_1(X_{m-2},X_{m-2})]+\rho _2Cov_1(X_{m-1},X_{m-2}) \nonumber \\&\quad =(\rho _1^2+\rho _2)Cov_1(X_{m-1},X_{m-2})+\rho _2\rho _1Cov_1(X_{m-2},X_{m-2}) \nonumber \\&\quad =M_2Cov_1(X_{m-1},X_{m-2})+\rho _2M_1Var_1(X_{m-2}). \end{aligned}$$
(65)

For \(4\le k\le m-1\), we consider

$$\begin{aligned} Cov_1(X_{m+1},X_{m+1-k})= & {} Cov_1(\rho _1X_m+\rho _2X_{m-1}+\eta _{m+1},X_{m+1-k}) \nonumber \\= & {} \rho _1Cov_1(X_m,X_{m+1-k})+\rho _2Cov_1(X_{m-1},X_{m+1-k})\nonumber \\ \end{aligned}$$
(66)

We evaluate terms \(Cov_1(X_m,X_{m+1-k})\) and \(Cov_1(X_{m-1},X_{m+1-k})\) of above Eq. (66) as follows:

$$\begin{aligned}&Cov_1(X_m,X_{m+1-k})\nonumber \\&\quad =Cov_1(X_m,X_{m-(k-1)}) \nonumber \\&\qquad (\hbox {Let }k^{'}=k-1.\hbox { Thus }4\le k\le m-1~~\Rightarrow ~~3\le k^{'} \le m-2.) \nonumber \\&\quad = Cov_1(X_m,X_{m-k^{'}}) \nonumber \\&\qquad (\hbox {Applying Eq. (61), in particular for } 3\le k^{'}\le m-2\hbox {, we get}) \nonumber \\&\quad =M_{k^{'}-1}Cov_1(X_{m-k^{'}+1},X_{m-k^{'}})+\rho _2M_{k^{'}-2}Var_1(X_{m-k^{'}}) \nonumber \\&\qquad (\hbox {Put }k^{'}=k-1.) \nonumber \\&\quad =M_{k-2}Cov_1(X_{m-k+2},X_{m-k+1})+\rho _2M_{k-3}Var_1(X_{m-k+1}) \end{aligned}$$
(67)
$$\begin{aligned}&\quad \qquad Cov_1(X_{m-1},X_{m+1-k})=Cov_1(X_{m-1},X_{m-1-(k-2)}) \nonumber \\&\qquad (\hbox {Let }k^{'}=k-2.\hbox { Thus }4\le k\le m-1~~\Rightarrow ~~2 \le k^{'} \le m-3.) \nonumber \\&\quad = Cov_1(X_{m-1},X_{m-1-k^{'}}) \nonumber \\&\qquad (\hbox {Applying Eq. (62)}) \nonumber \\&\quad = M_{k^{'}-1}Cov_1(X_{m-1-k^{'}+1},X_{m-1-k^{'}})+\rho _2M_{k^{'}-2}Var_1(X_{m-1-k^{'}}) \nonumber \\&\quad = M_{k^{'}-1}Cov_1(X_{m-k^{'}},X_{m-k^{'}-1})+\rho _2M_{k^{'}-2}Var_1(X_{m-k^{'}-1}) \nonumber \\&\qquad (\hbox {Put }k^{'}=k-2.) \nonumber \\&\quad =M_{k-3}Cov_1(X_{m-k+2},X_{m-k+1})+\rho _2M_{k-4}Var_1(X_{m-k+1}) \end{aligned}$$
(68)

Using Eqs. (67) and (68) in Eq. (66), we get \(\forall 4\le k\le m-1\)

$$\begin{aligned}&Cov_1(X_{m+1},X_{m+1-k})\nonumber \\&\quad = \rho _1[M_{k-2}Cov_1(X_{m-k+2},X_{m-k+1})+\rho _2M_{k-3}Var_1(X_{m-k+1})]+ \nonumber \\&\qquad \rho _2[M_{k-3}Cov_1(X_{m-k+2},X_{m-k+1})+\rho _2M_{k-4}Var_1(X_{m-k+1})] \nonumber \\&\quad =(\rho _1M_{k-2}+\rho _2M_{k-3})Cov_1(X_{m-k+2},X_{m-k+1})\nonumber \\&\qquad +\rho _2(\rho _1M_{k-3}+\rho _2M_{k-4})Var_1(X_{m-k+1}) \nonumber \\&\qquad (\hbox {By Eq. (14) of Lemma 1}) \nonumber \\&\quad = M_{k-1}Cov_1(X_{m-k+2},X_{m-k+1})+\rho _2M_{k-2}Var_1(X_{m-k+1}) \nonumber \\&\quad =M_{k-1}Cov_1(X_{m+1-k+1},X_{m+1-k})+\rho _2M_{k-2}Var_1(X_{m+1-k}) \end{aligned}$$
(69)

In view of (64), (65) and (69), the Eq. (63) is proved.

Thus Lemma 5 is proved. \(\square \)

Appendix 7

The proof of Lemma 6 is presented in this Appendix.

Proof

We consider the Eq. (30) of Lemma 6 as the statement corresponding to t. With this we prove the Eq. (30) by the method of mathematical induction.

Consider

$$\begin{aligned} Cov_1(P_2,X_k)= & {} Cov_1(u_1P_1+u_2P_{0}+\theta {\hat{S}}_2+\gamma X_2+\epsilon _2,X_k)\\= & {} \gamma Cov_1(X_2,X_k)\\= & {} \gamma [L_0Cov_1(X_2,X_k)]. \end{aligned}$$

Thus Eq. (30) is true for \(t=2\).

Let Eq. (30) be true for all t such that \(2\le t\le m\) for some positive integer m where \(2<m<T\).

To prove the Lemma 6, next we need to show that Eq. (30) is true for \(t=m+1\).

$$\begin{aligned}&Cov_1(P_{m+1},X_k)\nonumber \\&\quad = Cov_1(u_1P_{m}+u_2P_{m-1}+\theta {\hat{S}}_{m+1}+\gamma X_{m+1}+\epsilon _{m+1},X_k)\\&\quad =u_1Cov_1(P_m,X_k)+u_2Cov_1(P_{m-1},X_k)+\gamma Cov_1(X_{m+1},X_k)\\&\qquad (\hbox {By the assumption that Eq. (30) is true for all }t\hbox { such that }2\le t\le m)\\&\quad =u_1\gamma [L_0Cov_1(X_m,X_k)+L_1Cov_1(X_{m-1},X_k)+\cdots +L_{m-2}Cov_1(X_2,X_k)]+ \\&\qquad u_2\gamma [L_0Cov_1(X_{m-1},X_k)+L_1Cov_1(X_{m-2},X_k)+\cdots +L_{m-3}Cov_1(X_2,X_k)]\\&\qquad +\gamma Cov_1(X_{m+1},X_k)\\&\quad = \gamma [(u_1L_0)Cov_1(X_m,X_k)+(u_1L_1+u_2L_0)Cov_1(X_{m-1},X_k)\\&\qquad +(u_1L_2+u_2L_1)Cov_1(X_{m-2},X_k)+\cdots +(u_1L_{m-2}+u_2L_{m-3})Cov_1(X_2,X_k)]\\&\qquad +\gamma Cov_1(X_{m+1},X_k)\\&\qquad \hbox {(By using Eq. (13) of Lemma 1 and the equation } u_1L_0=L_1)\\&\quad =\gamma [L_0Cov_1(X_{m+1},X_k)+L_1Cov_1(X_{m},X_k)+\cdots +L_{m-1}Cov_1(X_2,X_k)] \end{aligned}$$

Thus Lemma 6 is proved. \(\square \)

Appendix 8

In this Appendix, we present the proof of Lemma 7.

Proof

We will use method of mathematical induction to prove the Eq. (31) of Lemma 7.

Consider

$$\begin{aligned} Cov_1(P_2,P_1)= & {} Cov_1(u_1 P_1+u_2 P_{0}+\theta {\hat{S}}_2+\gamma X_2+\epsilon _2,P_1) \\= & {} u_1Var_1(P_1)+\gamma Cov_1(X_2,P_1) \\= & {} u_1Var_1(P_1)+\gamma Cov_1(P_1,X_2). \end{aligned}$$

Thus Eq. (31) is true for \(t=2\).

Let Eq. (31) be true for all n such that \(2\le t\le m\) for some positive integer m where \(2<m<N\).

To prove the Lemma 5, next we need to show that Eq. (31) is true for \(t=m+1\).

$$\begin{aligned}&Cov_1(P_{m+1},P_{m})\\&\quad =Cov_1(u_1 P_m+u_2 P_{m-1}+\theta {\hat{S}}_{m+1}+\gamma X_{m+1}+\epsilon _{m+1},P_m) \\&\quad = u_1Var_1(P_m)+u_2Cov_1(P_{m-1},P_m)+\gamma Cov_1(X_{m+1},P_m)\\&\quad = u_1Var_1(P_m)+u_2Cov_1(P_m,P_{m-1})+\gamma Cov_1(X_{m+1},P_m)\\&\qquad \hbox {(By the assumption that Eq. (31) is true for all }n \hbox { such that }2\le n\le m)\\&\quad = u_1Var_1(P_m)+u_2\Big [u_1\Big \{Var_1(P_{m-1})+u_2Var_1(P_{m-2})+\cdots +u_2^{m-2}Var_1(P_1)\Big \}\\&\qquad +\gamma \Big \{Cov_1(P_{m-1},X_{m})+u_2Cov_1(P_{m-2},X_{m-1})+\cdots +u_2^{m-2}Cov_1(P_{1},X_{2})\Big \}\Big ]\\&\qquad +\gamma Cov_1(X_{m+1},P_m)\\&\quad = u_1[Var_1(P_m)+u_2Var_1(P_{m-1})+u_2^2Var_1(P_{m-2})+\cdots +u_2^{m-1}Var_1(P_1)]\\&\qquad +\gamma [Cov_1(P_{m},X_{m+1})+u_2Cov_1(P_{m-1},X_{m})+\cdots +u_2^{m-1}Cov_1(P_{1},X_{2})] \end{aligned}$$

Thus Lemma 7 is proved. \(\square \)

Appendix 9

In this Appendix, proof of Lemma 8 is presented.

Proof

We consider the Eq. (32) of Lemma 8 as the statement corresponding to n. With this we prove the Eq. (32) by the method of mathematical induction.

First we will show that Eq. (32) is true for \(n=3\).

For \(n=3\), we have \(2\le k\le 3-1\), that is \(k=2\).

$$\begin{aligned} Cov_1(P_3,P_{3-2})= & {} Cov_1(P_3,P_1)\\= & {} Cov_1(u_1P_2+u_2P_1+\theta {\hat{S}}_3+\gamma X_3+\epsilon _3,P_1)\\= & {} u_1Cov_1(P_2,P_1)+u_2Cov_1(P_1,P_1)+\gamma Cov_1(X_3,P_1)\\= & {} L_1Cov_1(P_2,P_1)+u_2L_0Var_1(P_1)+\gamma [L_0 Cov_1(P_1,X_3)] \end{aligned}$$

Assume that Eq. (32) is true for \(3\le n\le m\) for some positive integer m where \(3<m<N\). In particular we have following equations.

For \(n=m\) and corresponding \(2\le k\le m-1,\)

$$\begin{aligned} Cov_1(P_{m},P_{m-k})= & {} L_{k-1}Cov_1(P_{m-k+1},P_{m-k})+u_2L_{k-2}Var_1(P_{m-k}) \nonumber \\&\gamma [L_0Cov_1(P_{m-k},X_m)+L_1Cov_1(P_{m-k},X_{m-1})+\cdots \nonumber \\&+L_{k-2}Cov_1(P_{m-k},X_{m-k+2})]. \end{aligned}$$
(70)

For \(n=m-1\) and corresponding \(2\le k\le m-2,\)

$$\begin{aligned} Cov_1(P_{m-1},P_{m-1-k})= & {} L_{k-1}Cov_1(P_{m-k},P_{m-1-k})+u_2L_{k-2}Var_1(P_{m-1-k}) \nonumber \\&+\gamma [L_0Cov_1(P_{m-1-k},X_{m-1}) +L_1Cov_1(P_{m-1-k},X_{m-2})\nonumber \\&+\cdots +L_{k-2}Cov_1(P_{m-1-k},X_{m-k+1})]. \end{aligned}$$
(71)

To prove the Lemma 8, next we need to show that Eq. (32) is true for \(n=m+1\).

That is we need to show that \(\forall 2\le k\le m\).

$$\begin{aligned} Cov_1(P_{m+1},P_{m+1-k})= & {} L_{k-1}Cov_1(P_{m+1-k+1},P_{m+1-k})+u_2L_{k-2}Var_1(P_{m+1-k}) \nonumber \\&+\gamma [L_0Cov_1(P_{m+1-k},X_{m+1})\nonumber \\&+L_1Cov_1(P_{m+1-k},X_{m})\nonumber \\&+\cdots +L_{k-2}Cov_1(P_{m+1-k},X_{m-k+3})] \end{aligned}$$
(72)

We prove the Eq. (72) separately for \(k=2\), \(k=3\) and for \(4\le k\le m\).

For \(k=2\), we consider

$$\begin{aligned} Cov_1(P_{m+1},P_{m+1-2})= & {} Cov_1(P_{m+1},P_{m-1}) \nonumber \\= & {} Cov_1(u_1P_m+u_2P_{m-1}+\theta {\hat{S}}_{m+1}+\gamma X_{m+1}+\epsilon _{m+1},P_{m-1}) \nonumber \\= & {} u_1Cov_1(P_m,P_{m-1})+u_2Cov_1(P_{m-1},P_{m-1})\nonumber \\&+\gamma Cov_1(X_{m+1},P_{m-1}) \nonumber \\= & {} L_1Cov_1(P_m,P_{m-1})+u_2L_0Var_1(P_{m-1})\nonumber \\&+\gamma [L_0 Cov_1(P_{m-1},X_{m+1})] \end{aligned}$$
(73)

For \(k=3\), we consider

$$\begin{aligned}&Cov_1(P_{m+1},P_{m+1-3})\nonumber \\&\quad =Cov_1(P_{m+1},P_{m-2}) \nonumber \\&\quad =Cov_1(u_1P_m+u_2P_{m-1}+\theta {\hat{S}}_{m+1}+\gamma X_{m+1}+\epsilon _{m+1},P_{m-2}) \nonumber \\&\quad =u_1Cov_1(P_m,P_{m-2})+u_2Cov_1(P_{m-1},P_{m-2})+\gamma Cov_1(X_{m+1},P_{m-2}) \nonumber \\&\quad =u_1[u_1Cov_1(P_{m-1},P_{m-2})+u_2Cov_1(P_{m-2},P_{m-2})+\gamma Cov_1(X_{m},P_{m-2})] \nonumber \\&\qquad +u_2Cov_1(P_{m-1},P_{m-2})+\gamma Cov_1(X_{m+1},P_{m-2}) \nonumber \\&\quad =(u_1^2+u_2)Cov_1(P_{m-1},P_{m-2})+u_2u_1Cov_1(P_{m-2},P_{m-2}) \nonumber \\&\qquad \gamma [Cov_1(X_{m+1},P_{m-2})+u_1Cov_1(X_{m},P_{m-2})] \nonumber \\&\quad =L_2Cov_1(P_{m-1},P_{m-2})+u_2L_1Var_1(P_{m-2}) \nonumber \\&\qquad \gamma [L_0Cov_1(P_{m-2},X_{m+1})+L_1Cov_1(P_{m-2},X_{m})]. \end{aligned}$$
(74)

For \(4\le k\le m\), we consider

$$\begin{aligned} Cov_1(P_{m+1},P_{m+1-k})= & {} Cov_1(u_1P_m+u_2P_{m-1}+\theta {\hat{S}}_{m+1}+\gamma X_{m+1}+\epsilon _{m+1},P_{m+1-k}) \nonumber \\= & {} u_1Cov_1(P_m,P_{m+1-k})+u_2Cov_1(P_{m-1},P_{m+1-k}) \nonumber \\&+\gamma Cov_1(X_{m+1},P_{m+1-k}) ~~~~~~ \end{aligned}$$
(75)

We evaluate terms \(Cov_1(P_m,P_{m+1-k})\) and \(Cov_1(P_{m-1},P_{m+1-k})\) of above Eq. (75) as follows.

$$\begin{aligned} Cov_1(P_m,P_{m+1-k})= & {} Cov_1(P_m,P_{m-(k-1)}) \nonumber \\&(\hbox {Let }k^{'}=k-1.\hbox { Thus }4\le k\le m~~\Rightarrow ~~3\le k^{'} \le m-1.) \nonumber \\= & {} Cov_1(P_m,P_{m-k^{'}}) \nonumber \\&(\hbox {Applying Eq. (70), in particular for }3\le k^{'}\le m-1,\hbox { we get}) \nonumber \\= & {} L_{k^{'}-1}Cov_1(P_{m-k^{'}+1},P_{m-k^{'}})+u_2L_{k^{'}-2}Var_1(P_{m-k^{'}}) \nonumber \\&+\gamma [L_0Cov_1(P_{m-k^{'}},X_m)+L_1Cov_1(P_{m-k^{'}},X_{m-1})+\cdots \nonumber \\&+L_{k^{'}-2}Cov_1(P_{m-k^{'}},X_{m-k^{'}+2})] \nonumber \\ {}&(\hbox {Put }k^{'}=k-1.) \nonumber \\= & {} L_{k-2}Cov_1(P_{m-k+2},P_{m-k+1})+u_2L_{k-3}Var_1(P_{m-k+1}) \nonumber \\ {}&+\gamma [L_0Cov_1(P_{m-k+1},X_m) +L_1Cov_1(P_{m-k+1},X_{m-1})\nonumber \\ {}&+\cdots +L_{k-3}Cov_1(P_{m-k+1},X_{m-k+3})] \end{aligned}$$
(76)
$$\begin{aligned} Cov_1(P_{m-1},P_{m+1-k})= & {} Cov_1(P_{m-1},P_{m-1-(k-2)}) \nonumber \\&(\hbox {Let }k^{'}=k-2.\hbox { Thus }4\le k\le m~~\Rightarrow ~~2\le k^{'} \le m-2.) \nonumber \\= & {} Cov_1(P_{m-1},P_{m-1-k^{'}}) \nonumber \\&(\hbox {Applying Eq. (71)}) \nonumber \\= & {} L_{k^{'}-1}Cov_1(P_{m-k^{'}},P_{m-1-k^{'}})+u_2L_{k^{'}-2}Var_1(P_{m-1-k^{'}}) \nonumber \\ {}&+\gamma [L_0Cov_1(P_{m-1-k^{'}},X_{m-1}) +L_1Cov_1(P_{m-1-k^{'}},X_{m-2})\nonumber \\ {}&+\cdots +L_{k^{'}-2}Cov_1(P_{m-1-k^{'}},X_{m-k^{'}+1})] \nonumber \\&(\hbox {Put }k^{'}=k-2.) \nonumber \\= & {} L_{k-3}Cov_1(P_{m-k+2},P_{m-k+1})+u_2L_{k-4}Var_1(P_{m-k+1}) \nonumber \\ {}&+\gamma [L_0Cov_1(P_{m-k+1},X_{m-1}) +L_1Cov_1(P_{m-k+1},X_{m-2})\nonumber \\ {}&+\cdots +L_{k-4}Cov_1(P_{m-k+1},X_{m-k+3})] \end{aligned}$$
(77)

Using Eqs. (76) and (77) in Eq. (75), we get \(\forall 4\le k\le m\)

$$\begin{aligned} Cov_1(P_{m+1},P_{m+1-k})= & {} u_1\Big \{L_{k-2}Cov_1(P_{m-k+2},P_{m-k+1})+u_2L_{k-3}Var_1(P_{m-k+1}) \nonumber \\ {}&+\gamma [L_0Cov_1(P_{m-k+1},X_m) +L_1Cov_1(P_{m-k+1},X_{m-1})+\cdots \nonumber \\ {}&+L_{k-3}Cov_1(P_{m-k+1},X_{m-k+3})]\Big \}\nonumber \\&+u_2\Big \{L_{k-3}Cov_1(P_{m-k+2},P_{m-k+1})+u_2L_{k-4}Var_1(P_{m-k+1}) \nonumber \\&+\gamma [L_0Cov_1(P_{m-k+1},X_{m-1}) +L_1Cov_1(P_{m-k+1},X_{m-2})+\cdots \nonumber \\&+L_{k-4}Cov_1(P_{m-k+1},X_{m-k+3})]\Big \} +\gamma Cov_1(X_{m+1},P_{m+1-k}) \nonumber \\= & {} (u_1L_{k-2}+u_2L_{k-3})Cov_1(P_{m-k+2},P_{m-k+1})+u_2(u_1L_{k-3}\nonumber \\ {}&+u_2L_{k-4})Var_1(P_{m-k+1}) +\gamma [u_1L_0Cov_1(P_{m-k+1},X_m)\nonumber \\ {}&+(u_1L_1+u_2L_0)Cov_1(P_{m-k+1},X_{m-1})+\cdots \nonumber \\ {}&+(u_1L_{k-3}+u_2L_{k-4})Cov_1(P_{m-k+1},X_{m-k+3})] \nonumber \\ {}&+\gamma Cov_1(X_{m+1},P_{m+1-k}) \nonumber \\&(\hbox {By Eq. (13) Lemma 1 and the equation } u_1L_0=L_1) \nonumber \\= & {} L_{k-1}Cov_1(P_{m-k+2},P_{m-k+1})+u_2L_{k-2}Var_1(P_{m-k+1}) \nonumber \\ {}&+\gamma [L_0Cov_1(X_{m+1},P_{m+1-k}) \nonumber \\&+L_1Cov_1(P_{m-k+1},X_m)+L_2Cov_1(P_{m-k+1},X_{m-1})+\cdots \nonumber \\&+L_{k-2}Cov_1(P_{m-k+1},X_{m-k+3})] \nonumber \\= & {} L_{k-1}Cov_1(P_{m+1-k+1},P_{m+1-k})+u_2L_{k-2}Var_1(P_{m+1-k}) \nonumber \\ {}&+\gamma [L_0Cov_1(P_{m+1-k},X_{m+1})\nonumber \\&+L_1Cov_1(P_{m+1-k},X_{m})+\cdots +L_{k-2}Cov_1(P_{m+1-k},X_{m-k+3})] \nonumber \\ \end{aligned}$$
(78)

In view of (73), (74) and (78), the Eq. (72) is proved.

Thus Lemma 8 is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Selvamuthu, D. Mean–variance optimal trading problem subject to stochastic dominance constraints with second order autoregressive price dynamics. Math Meth Oper Res 86, 29–69 (2017). https://doi.org/10.1007/s00186-017-0582-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-017-0582-4

Keywords