Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An enhanced algorithm to estimate BDS satellite’s differential code biases

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This paper proposes an enhanced algorithm to estimate the differential code biases (DCB) on three frequencies of the BeiDou Navigation Satellite System (BDS) satellites. By forming ionospheric observables derived from uncombined precise point positioning and geometry-free linear combination of phase-smoothed range, satellite DCBs are determined together with ionospheric delay that is modeled at each individual station. Specifically, the DCB and ionospheric delay are estimated in a weighted least-squares estimator by considering the precision of ionospheric observables, and a misclosure constraint for different types of satellite DCBs is introduced. This algorithm was tested by GNSS data collected in November and December 2013 from 29 stations of Multi-GNSS Experiment (MGEX) and BeiDou Experimental Tracking Stations. Results show that the proposed algorithm is able to precisely estimate BDS satellite DCBs, where the mean value of day-to-day scattering is about 0.19 ns and the RMS of the difference with respect to MGEX DCB products is about 0.24 ns. In order to make comparison, an existing algorithm based on IGG: Institute of Geodesy and Geophysics, China (IGGDCB), is also used to process the same dataset. Results show that, the DCB difference between results from the enhanced algorithm and the DCB products from Center for Orbit Determination in Europe (CODE) and MGEX is reduced in average by 46 % for GPS satellites and 14 % for BDS satellites, when compared with DCB difference between the results of IGGDCB algorithm and the DCB products from CODE and MGEX. In addition, we find the day-to-day scattering of BDS IGSO satellites is obviously lower than that of GEO and MEO satellites, and a significant bias exists in daily DCB values of GEO satellites comparing with MGEX DCB product. This proposed algorithm also provides a new approach to estimate the satellite DCBs of multiple GNSS systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-salam MA-T (2005) Precise point positioning using un-differenced code and carrier phase observations. PhD Thesis, University of Calgary, Calgary

  • Arikan F, Nayir H, Sezen U, Arikan O (2008) Estimation of single station interfrequency receiver bias using GPS-TEC. Radio Sci 43(4):762–770. doi:10.1029/2007RS003785

    Article  Google Scholar 

  • Bishop G, Klobuchar J, Doherty P (1985) Multipath effects on the determination of absolute ionospheric time delay from GPS signals. Radio Sci 20(3):388–396. doi:10.1029/RS020i003p00388

    Article  Google Scholar 

  • Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84(5):293–304. doi:10.1007/s00190-010-0367-5

    Article  Google Scholar 

  • Cheng P, Li W, Bei J, Wen H, Cai Y, Wang H (2011) Performance of precise point positioning (PPP) based on uncombined dual-frequency GPS observables. Surv Rev 43(322):343–350. doi:10.1179/003962611X13055561708588

    Article  Google Scholar 

  • Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120. doi:10.1007/s00190-006-0093-1

    Article  Google Scholar 

  • Coco DS, Coker C, Dahlke SR, Clynch JR (1991) Variability of GPS satellite differential group delay biases. IEEE Trans Aerosp Electron Syst 27(6):931–938. doi:10.1109/7.104264

    Article  Google Scholar 

  • CSNO (2012) BeiDou navigation satellite system signal in space interface control document. China Satellite Navigation Office. http://www.beidou.gov.cn/attach/2013/12/26/20131226b8a6182fa73a4ab3a5f107f762283712.pdf

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Bern

  • Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi:10.1007/s00190.008-0281-2

    Article  Google Scholar 

  • Deng Z, Zhao Q, Springer T, Prange L, Uhlemann M (2014) Orbit and clock determination-BeiDou. In: Proceedings of IGS workshop, Pasadena, 23–27 June 2014

  • Dow JM, Neilan R, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Feltens J, Schaer S (1998) IGS products for the ionosphere. In: Proceedings of the 1998 IGS analysis centers workshop, ESOC, Darmstadt, 9–11 February 1998

  • Griffiths J, Ray JR (2008) On the precision and accuracy of IGS orbits. J Geod 83(3–4):277–287. doi:10.1007/s00190-008-0237-6

    Google Scholar 

  • Hernández-Pajares M, Juan J, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275. doi:10.1007/s00190-008-0266-1

    Article  Google Scholar 

  • Jee G, Lee HB, Kim Y, Chung JK, Cho J (2010) Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective. J Geophys Res Space Phys 115(A10):161–168. doi:10.1029/2010JA015432

    Article  Google Scholar 

  • Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40(6). doi:10.1029/2005rs003279

  • Le AQ, Tiberius C (2007) Single-frequency precise point positioning with optimal filtering. GPS Solut 11(1):61–69. doi:10.1007/s10291-006-0033-9

    Article  Google Scholar 

  • Leandro RF, Santos MC, Langley RB (2011) Analyzing GNSS data in precise point positioning software. GPS Solut 15(1):1–13. doi:10.1007/s10291-010-0173-9

    Article  Google Scholar 

  • Li Z, Yuan Y, Li H, Ou J, Huo X (2012) Two-step method for the determination of the differential code biases of COMPASS satellites. J Geod 86(11):1059–1076. doi:10.1007/s00190-012-0565-4

    Article  Google Scholar 

  • Li XX, Ge MR, Zhang HP, Wickert J (2013) A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning. J Geod 87(5):405–416. doi:10.1007/s00190-013-0611-x

    Article  Google Scholar 

  • Li M, Qu L, Zhao Q, Guo J, Su X, Li X (2014a) Precise point positioning with the BeiDou navigation satellite system. Sensors 14(1):927–943. doi:10.3390/s140100927

  • Li Z, Yuan Y, Fan L, Huo X, Hsu H (2014b) Determination of the differential code bias for current BDS satellites. IEEE Trans Geosci Remote Sens 52(7):3968–3979. doi:10.1109/TGRS.2013.2278545

  • Liu Z (2011) A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. J Geod 85(3):171–183. doi:10.1007/s00190-010-0426-y

    Article  Google Scholar 

  • Lou Y, Liu Y, Shi C, Yao X, Zheng F (2014) Precise orbit determination of BeiDou constellation based on BETS and MGEX network. Sci Rep 4. doi:10.1038/srep04692

  • Manucci A, Iijima B, Lindqwister U, Pi X, Sparks L, Wilson B (1999) GPS and ionosphere. Review of radio science. Oxford University Press, Oxford, pp 1996–1999

    Google Scholar 

  • Mayer C, Becker C, Jakowski N, Meurer M (2011) Ionosphere monitoring and inter-frequency bias determination using Galileo: first results and future prospects. Adv Space Res 47(5):859–866. doi:10.1016/j.asr.2010.12.006

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation 31(3):191–201. doi:10.1002/navi.64

    Article  Google Scholar 

  • Øvstedal O (2002) Absolute positioning with single-frequency GPS receivers. GPS Solut 5(4):33–44. doi:10.1007/PL00012910

    Article  Google Scholar 

  • Rizos C, Montenbruck O, Weber R, Weber G, Neilan R, Hugentobler U (2013) The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. Proc ION Pac PNT Meet 8900(6):289–295

    Google Scholar 

  • Sardon E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32(5):1899–1910. doi:10.1029/97rs01457

    Article  Google Scholar 

  • Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Sci 29(3):577–586. doi:10.1029/94RS00449

    Article  Google Scholar 

  • Schaer S, Steigenberger P (2006). Determination and use of GPS differential code bias values. In: Paper presented at IGS workshop, Darmstadt, 8–11 May 2006

  • Steigenberger P, Hugentobler U, Hauschild A, Montenbruck O (2013) Orbit and clock analysis of compass GEO and IGSO satellites. J Geod 87(6):515–525. doi:10.1007/s00190-013-0625-4

    Article  Google Scholar 

  • Tu R, Ge MR, Zhang HP, Huang GW (2013) The realization and convergence analysis of combined PPP based on raw observation. Adv Space Res 52(1):211–221. doi:10.1016/j.asr.2013.03.005

    Article  Google Scholar 

  • Wei L, Pengfei C, Jinzhong B, Hanjiang W, Hua W (2012) Calibration of regional ionospheric delay with uncombined precise point positioning and accuracy assessment. J Earth Syst Sci 121(4):989–999. doi:10.1007/s12040-012-0206-6

    Article  Google Scholar 

  • Wei C, Zhang Q, Fan L, Zhang S, Huang G, Chen K (2014) Estimate DCB of BDS satellites based on the observations of GPS/BDS. In: 2014 Proceedings of the China satellite navigation conference (CSNC), vol II. Springer, vol 304, pp 351–362. doi:10.1007/978-3-642-54743-0_29

  • Wilson BD, Mannucci AJ (1993) Instrumental biases in ionospheric measurement derived from GPS data. In: Proceedings of ION GPS-93, Salt Like City, 22–24 September 1993, pp 1343–1351

  • Yuan Y, Ou J (2004) A generalized trigonometric series function model for determining ionospheric delay. Prog Nat Sci 14(11):1010–1014. doi:10.1080/10020070412331344711

    Article  Google Scholar 

  • Yuan Y, Huo X, Ou J (2007) Models and methods for precise determination of ionospheric delay using GPS. Prog Nat Sci 17(2):187–196. doi:10.1080/10020070612331343245

    Article  Google Scholar 

  • Zhang H, Gao Z, Ge M, Niu X, Huang L, Tu R, Li X (2013) On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations. Sensors 13(11):15708–15725. doi:10.3390/s131115708

  • Zhao Q, Guo J, Li M, Qu L, Hu Z, Shi C, Liu J (2013) Initial results of precise orbit and clock determination for COMPASS navigation satellite system. J Geod 87(5):1–12. doi:10.1007/s00190-013-0622-7

    Article  Google Scholar 

Download references

Acknowledgments

The supports from the National Natural Science Foundation of China (Grant No. 41231174, 41325015, 41204029, 41375041, 41274039, 41304034), the National “863 Program” of China (Grant No. 2014AA123101), and the State Key Laboratory of Geodesy and Earth’s Dynamics (Grant No. SKLGED2013-4-2-Z, SKLGED2014-3-1-E) are gratefully acknowledged. This work is also supported by the Hong Kong Research Grants Council (RGC) projects (PolyU 5325/12E, F-PP0F and PolyU 5203/13E, B-Q37X). Zhizhao Liu acknowledges support from the Program of Introducing Talents of Discipline to Universities (Wuhan University, GNSS Research Center), China. Thanks are also due to Yunbin Yuan for valuable suggestions and Zishen Li for assistance with the experiments on IGGDCB part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li.

Appendices

Appendix 1: The ionospheric observable derived from UPPP

UPPP uses original observables. The number of observables is doubled compared to the ionosphere-free combination method, and the amplification effect of multipath and measurement noises is avoided. Line of sight (LOS) ionospheric observables are treated as parameters to be estimated in this procedure, together with GNSS station coordinate components, receiver clock error, wet zenith tropospheric delay and ambiguities at both frequencies. Since GPS product and BDS product obtained from different Analysis Centers (CODE and WHU) are used in our experiment, the inconsistency of the clock reference will affect GPS-BDS time offset (i.e., 1.5 ns downward trend existed in GPS-BDS time offset for all stations on the DOY 358), thus separate receiver clock errors for GPST and BDT, instead of a receiver clock and a constant GPS-BDS time offset, are estimated.

The GPS and BDS dual-frequency code and carrier-phase observation equations can be expressed as follows:

$$\begin{aligned} P_{r,i}^{j,s}= & {} \rho _r^{j,s} +c\cdot \delta t_r^s -c\cdot \delta t^{j,s}+T_r^{j,s} \nonumber \\&+\,\mu _i^{s} \cdot I_{r,1}^{j,s} +c\cdot b_{r,i}^{j} +c\cdot b_i^{j,s} +\varepsilon _{i,P}^{j,s} \nonumber \\ {\Phi }_{r,i}^{j,s}= & {} \rho _r^{j,s} +c\cdot \delta t_r^s -c\cdot \delta t^{j,s}+T_r^{j,s} -\mu _i^s \cdot I_{r,1}^{j,s}\nonumber \\&+\,\lambda _i^s \cdot {\varvec{M}}_{r,i}^{j,s} +\varepsilon _{i,{\Phi }}^{j,s}, \end{aligned}$$
(12)

where jris denote satellite PRN, receiver, frequency (\(i=1,2)\), and satellite system (\(s=G\) for GPS and \({s}=C\) for BDS), respectively; \(P_{r,i}^{j,s} \) and \({\Phi }_{r,i}^{j,s} \) represent pseudorange code and carrier-phase measurements at frequency \(f_{s,i} \), respectively; \(\rho _r^{j,s} \) is the geometric range from GPS/BDS satellite to receiver antennas; \(\delta t_r^s \) and \(\delta t^{j,s}\) are receiver and satellite clock errors for the satellite system s; \(T_r^{j,s} \) denotes the LOS tropospheric delays; \(\mu _i^s =f_{s,1}^2 /f_{s,i}^2 \) is a constant factor at frequency \(f_{s,i} \); \(I_{r,1}^{j,s} =\frac{\alpha \cdot \mathrm{sTEC}_r^{j,s} }{f_{s,1}^2 }\) is the dispersive ionospheric effect on GPS/BDS signal propagation at frequency \(f_{s,1} \) where \(\mathrm{sTEC}_r^{j,s} \) is the slant TEC and \(\alpha \) is a constant (\(\alpha =4.028\times 10^{17}\, \mathrm{m}\, \mathrm{s}^{-2}\, \mathrm{TECU}^{-1})\); \(\lambda _i^s \) denotes wavelength at frequency \(f_{s,i} \) on GPS or BDS satellite; \(M_{r,i}^{j,s} \) represents carrier-phase ambiguity including satellite and receiver phase instrumental delays and initial phase bias; \(b_{r,i}^j \) and \(b_i^{j,s} \) denote the hardware delay of satellite and receiver, respectively; \(\varepsilon _{i,P}^{j,s} \) and \(\varepsilon _{i,{\Phi }}^{j,s} \) are the noise and multipath effects of observations in pseudorange code and carrier-phase measurements, respectively.

As the satellite clock error is derived from ionosphere-free combination observables, the hardware delays \(b_1^{j,s} \) and \(b_2^{j,s} \) are introduced to the satellite clock product, as shown in Eq. (13). The frequencies of L1 and L2 are used for GPS satellites whilst the frequencies of B1 and B2 are used for BDS satellites. Thus only two frequencies in GPS and BDS can be used in UPPP to be consistent with the clock products.

$$\begin{aligned} \delta \tilde{t}^{j,s}=\delta t^{j,s}-\frac{\mu _2^s }{\mu _2^s -1}\cdot b_1^{j,s} +\frac{1}{\mu _2^s -1}\cdot b_2^{j,s} \end{aligned}$$
(13)

After organizing the equations, the full-rank linear equation can be formed as shown in Eq. (14):

$$\begin{aligned} \Delta P_{r,i}^{j,s}= & {} -{\varvec{\gamma }} _{r,i}^{j,s} \cdot \Delta {\varvec{r}}+c\cdot \delta {\tilde{t}} _r^s +M_w \cdot T_w +\mu _i^s \cdot \tilde{I}_{r,1}^{j,s} +\varepsilon _{i,P}^{j,s} \nonumber \\ \Delta {\Phi }_{r,i}^{j,s}= & {} -{\varvec{\gamma }} _{r,i}^{j,s} \cdot \Delta \varvec{r}+c\cdot \delta \tilde{t}_r^s +M_w \cdot T_w -\mu _i^s \cdot \tilde{I}_{r,1}^{j,s}\nonumber \\&+\,\lambda _i^s \cdot \tilde{M}_{r,i}^{j,s} +\varepsilon _{i,{\Phi }}^{j,s} , \end{aligned}$$
(14)

where \(\Delta P_{r,i}^{j,s} \) and \(\Delta {\Phi }_{r,i}^{j,s} \) denote the observed minus calculated observations (O \(-\) C) for the code and carrier-phase. The errors related to satellite (i.e., phase center offset of GPS and BDS satellites and phase center variation for GPS satellites), propagation path (i.e., phase wind-up and dry tropospheric delay) and the ground stations (i.e., solid earth tide and ocean loading tide) have been corrected using empirical models; \({\varvec{\gamma }} _{r,i}^{j,s} \) is the unit direction vector from receiver to satellite; \(\Delta {\varvec{r}}\) is the correction to the approximate coordinates of the receiver; \(T_w \) and \({M}_w \) denote zenith wet tropospheric delay and its projection function related to the satellite’s zenith distance; the formation of other symbols is shown in Eq. (15).

$$\begin{aligned}&{\delta \tilde{t}_r^s =\delta t_r^s +b_{r,if}^s } \nonumber \\&{\tilde{I}_{r,1}^{j,s} =\frac{\alpha }{f_{s,1}^2 }\cdot \mathrm{sTEC}_r^{j,s}-\frac{c}{\mu _2^s -1}( {B_{12}^{j,s} +B_{r,12}^s })} \nonumber \\&{\tilde{M}_{r,i}^{j,s} =M_{r,i}^{j,s} -\frac{c\cdot b_{r,if}^s }{\lambda _i^s }-\frac{c\cdot b_{if}^{j,s} }{\lambda _i^s }+\frac{c}{\lambda _i^s ( {\mu _2^s -1})}( {B_{12}^{j,s} +B_{r,12}^s })} \nonumber \\&{b_{r,if}^s =\frac{\mu _2^s }{\mu _2^s -1}\cdot b_{r,1}^s -\frac{1}{\mu _2^s -1}\cdot b_{r,2}^s } \nonumber \\&{b_{if}^{j,s} =\frac{\mu _2^s }{\mu _2^s -1}\cdot b_1^{j,s} -\frac{1}{\mu _2^s -1}\cdot b_2^{j,s} }, \end{aligned}$$
(15)

where \(\delta \tilde{t}_r^s \), \(\tilde{I}_{r,1}^{j,s} \) and \(\tilde{M}_{r,i}^{j,s} \) are receiver clock error, LOS slant ionospheric observable, and ambiguity to be estimated, respectively; \(B_{12}^{j,s} =b_1^{j,s} -b_2^{j,s} \) and \(B_{r,12}^s =b_{r,1}^s -b_{r,2}^s \) denote satellite and receiver DCBs. It can be seen that the new ambiguity \(\tilde{M}_{r,i}^{j,s} \) is no longer an integer. For each GPS or BDS satellite, four observation equations can be formed from dual-frequency code and carrier-phase observables and three unknown parameters need to be estimated: slant ionosphere \(\tilde{I}_{r,1}^{j,s} \) on frequency \(f_{s,1} \), and carrier-phase ambiguities \(\tilde{M}_{r,i}^{j,s} \) on two frequencies (\(i=1,2)\). In conclusion, if the numbers of GPS and BDS satellites observed at one epoch are p and q, respectively, the number of observation equations is \(4( {p+q})\). The total number of unknown parameters is \(( {6+3( {p+q})})\). The six parameters common to all satellites are: three coordinate components, two receiver clock errors for GPST and BDT, respectively, and one ZTD parameter of the station. The three parameters for each satellite are slant ionosphere on frequency \(f_{s,1} \) and ambiguities on two frequencies.

A further conversion from length unit (m) to TEC unit (TECU) needs to be handled through multiplying \(\tilde{I}_{r,1}^{j,s} \) in Eq. (15)  by \(\frac{f_{s,1}^2 }{\alpha }\), thus the ionospheric observable can be expressed as a new variable shown in Eq. (16).

$$\begin{aligned} \hat{I}_{r,1,\mathrm{UPPP}}^{j,s} =\mathrm{sTEC}_r^{j,s} -A\cdot ( {B_{12}^{j,s} +B_{r,12}^s }), \end{aligned}$$
(16)

where A is a constant value used to convert time unit (s) to TEC unit (TECU), defined as \(A=\frac{c}{\alpha ( {f_{s,2}^{-2} -f_{s,1}^{-2} })}\); \(\hat{I}_{r,1}^{j,s} \) is used for DCB separation in further processing. The subscript UPPP is used to indicate that the ionospheric observable is derived from UPPP.

The Kalman filter is often used for parameter estimation. Considering moderate variations during short periods (Abdel-salam 2005), the ionospheric observable \(\hat{I}_{r,1,\mathrm{UPPP}}^{j,s} \) can be modeled as random walk during parameter estimation process and the variance of \(\hat{I}_{r,1,\mathrm{UPPP}}^{j,s} \) at each epoch can also be derived in this process.

Appendix 2: The ionospheric observable derived from GFPSR

The geometry-free linear combination of code-delay and carrier-phase at frequencies \(f_{s,i} \) and \(f_{s,k} \) can be formed:

$$\begin{aligned} P_{r,ik}^{j,s}= & {} P_{r,i}^{j,s} -P_{r,k}^{j,s} =-\alpha \cdot ( {f_{s,k}^{-2} -f_{s,i}^{-2} })\cdot \mathrm{sTEC}_r^{j,s} \nonumber \\&+\,c\cdot ( {B_{r,ik}^s +B_{ik}^{j,s} })+\varepsilon _{i,P}^{j,s} -\varepsilon _{k,P}^{j,s} \nonumber \\ {\Phi }_{r,ik}^{j,s}= & {} {\Phi }_{r,i}^{j,s} -{\Phi }_{r,k}^{j,s} =\alpha \cdot ( {f_{s,k}^{-2} -f_{s,i}^{-2} })\cdot \mathrm{sTEC}_r^{j,s} \nonumber \\&+\,( {\lambda _i^s \cdot M_{r,i}^{j,s} -\lambda _k^s \cdot M_{r,k}^{j,s} })+\varepsilon _{i,{\Phi }}^{j,s} -\varepsilon _{k,{\Phi }}^{j,s} \end{aligned}$$
(17)

The definition of variables in Eq. (17) is same as Eq. (12). It should be noted that the correlation between different frequencies for either code or carrier-phase observation is not considered.

It can be seen from Eq. (17) that the geometry-free combination of carrier-phase contains unsolved ambiguities that impede the direct use of carrier-phase observables. To get high-precision code observables, they are smoothed by the carrier-phase ones. In this procedure, the code observables are actually replaced by the carrier-phases, shifted by the average value of code minus phase in a continuous arc (Dach et al. 2007), as shown in Eq. (18).

$$\begin{aligned} \tilde{P}_{r,i}^{j,s}= & {} {\Phi }_{r,i}^{j,s} +\bar{P}_{r,i}^{j,s} -{\bar{\Phi }}_{r,i}^{j,s} +\frac{2f_{s,k}^2 }{f_{s,i}^2 -f_{s,k}^2 }\nonumber \\&\times \left( {\left( {{\Phi }_{r,i}^{j,s} -{\bar{\Phi }}_{r,i}^{j,s} })-( {{\Phi }_{r,k}^{j,s} -{\bar{\Phi }}_{r,k}^{j,s} }\right) }\right) \nonumber \\ \tilde{P}_{r,k}^{j,s}= & {} {\Phi }_{r,k}^{j,s} +\bar{P}_{r,k}^{j,s} -{\bar{\Phi }}_{r,k}^{j,s} +\frac{2f_{s,i}^2 }{f_{s,i}^2 -f_{s,k}^2 }\nonumber \\&\times \left( {\left( {{\Phi }_{r,i}^{j,s} -{\bar{\Phi }}_{r,i}^{j,s} })-( {{\Phi }_{r,k}^{j,s} -{\bar{\Phi }}_{r,k}^{j,s} }\right) }\right) , \end{aligned}$$
(18)

where \(\bar{P}_i^j =\frac{\mathop \sum \nolimits _{n=1}^N P_{r,i,n}^j }{N}\) and \({\bar{\Phi }}_i^j =\frac{\mathop \sum \nolimits _{n=1}^N {\Phi }_{r,i,n}^j }{N}\) are the mean code observations and carrier-phase in an arc; \(P_{r,i,n} \) and \({\Phi }_{r,i,n} \) are the code and phase observables at the nth epoch, respectively.

The smoothed code observables are used to form geometry-free combination. Thus, the actual ionospheric observable can be obtained as shown in Eq. (19):

$$\begin{aligned} \tilde{P}_{r,ik}^{j,s}= & {} \tilde{P}_{r,i}^{j,s} -\tilde{P}_{r,k}^{j,s} =-( {{\Phi }_{r,i}^{j,s} -{\Phi }_{r,k}^{j,s} })\nonumber \\&+\,\frac{\mathop \sum \nolimits _{n=1}^N ( {( {P_{r,i,n}^{j,s} -P_{r,k,n}^{j,s} })+( {{\Phi }_{r,i,n}^{j,s} -{\Phi }_{r,k,n}^{j,s} })})}{N}.\nonumber \\ \end{aligned}$$
(19)

Taking Eq. (17) into Eq. (19), the derived ionospheric observable is shown in Eq. (20):

$$\begin{aligned} \tilde{P}_{r,ik}^{j,s}= & {} -\alpha \cdot ( {f_{s,k}^{-2} -f_{s,i}^{-2} })\cdot \mathrm{sTEC}_r^{j,s}\nonumber \\&+c\cdot ( B_{ik}^{j,s}+B_{r,ik}^s )+\varepsilon _{ik,{\tilde{P}}}^{j,s}. \end{aligned}$$
(20)

It can be seen that the right side of Eq. (20) is the same as that of Eq. (17) except noise \(\varepsilon \), indicating that the ionospheric observables (slant TEC plus combination of satellite and receiver DCBs) derived from the raw code and smoothed code have the same form but different precisions.

Multiplying \(\tilde{P}_{r,ik}^s \) by \(\frac{-1}{\alpha ( {f_{s,k}^{-2} -f_{s,i}^{-2} })}\), the ionospheric observable is converted from length unit (m) to TECU, which can be expressed as shown in Eq. (21):

$$\begin{aligned}&\hat{I}_{r,ik,\mathrm{GFPSR}}^{j,s} =\mathrm{sTEC}_r^{j,s} -A\cdot ( {B_{ik}^{j,s} +B_{r,ik}^s })+\varepsilon _{ik,{\tilde{I}}}^{j,s}\nonumber \\&\varepsilon _{ik,{\tilde{I}}}^{j,s} =\Delta \varepsilon _{\Phi } +\Delta \bar{\varepsilon }_P +\Delta \bar{\varepsilon }_{\Phi }, \end{aligned}$$
(21)

where the subscript GFPSR indicates that the ionospheric observable is derived from the smoothed code; \(\bar{\varepsilon }=\frac{\mathop \sum \nolimits _{n=1}^N \varepsilon _N }{N}\) and N is the number of continuous measurements contained in the arc; \(\Delta \) is the difference operator between frequencies i and k; the rest variables have the same definitions as Eq. (16). It can be clearly seen that the precision of GFPSR is affected by the length of a continuous arc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Fan, L., Li, M. et al. An enhanced algorithm to estimate BDS satellite’s differential code biases. J Geod 90, 161–177 (2016). https://doi.org/10.1007/s00190-015-0863-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0863-8

Keywords