Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving integer ambiguity resolution for GLONASS precise orbit determination

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The frequency division multiple access adopted in present GLONASS introduces inter-frequency bias (IFB) at the receiver-end both in code and phase observables, which makes GLONASS ambiguity resolution rather difficult or even not available, especially for long baselines up to several thousand kilometers. This is one of the major reasons that GLONASS could hardly reach the orbit precision of GPS, both in terms of consistency among individual International GNSS Service (IGS) analysis centers and discontinuity at the overlapping day boundaries. Based on the fact that the GLONASS phase IFB is similar on L1 and L2 bands in unit of length and is a linear function of the frequency number, several approaches have been developed to estimate and calibrate the IFB for integer ambiguity resolution. However, they are only for short and medium baselines. In this study, a new ambiguity resolution approach is developed for GLONASS global networks. In the approach, the phase ambiguities in the ionosphere-free linear combination are directly transformed with a wavelength of about 5.3 cm, according to the special frequency relationship of GLONASS L1 and L2 signals. After such transformation, the phase IFB rate can be estimated and corrected precisely and then the corresponding double-differenced ambiguities can be directly fixed to integers even for baselines up to several thousand kilometers. To evaluate this approach, experimental validations using one-month data of a global network with 140 IGS stations was carried out for GLONASS precise orbit determination. The results show that the GLONASS double-difference ambiguity resolution for long baselines could be achieved with an average fixing-rate of 91.4 %. Applying the fixed ambiguities as constraints, the GLONASS orbit overlapping RMS at the day boundaries could be reduced by 37.2 % in ideal cases and with an averaged reduction of about 21.4 %, which is comparable with that by the GPS ambiguity resolution. The orbit improvement is also confirmed by the better agreement with the independent satellite laser ranging observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Shaery A, Zhang S, Lim S, Rizos C (2012) A comparative study of mathematical modelling for GPS/GLONASS real-time kinematic (RTK). In: Proceedings of ION GNSS 2012, pp 2231–2238

  • Al-Shaery A, Zhang S, Rizos C (2013) An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK. GPS Solut 17(2):165–173

    Article  Google Scholar 

  • Banville S, Collins P, Lahaye F (2013) GLONASS ambiguity resolution of mixed receiver types without external calibration. GPS Solut 17(3):275–282

    Article  Google Scholar 

  • Bertiger W, Desai S, Haines B, Harvey N, Moore A, Owen S, Weiss J (2010) Single receiver phase ambiguity resolution with GPS data. J Geod 84(6):327–337

    Article  Google Scholar 

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscr Geod 19:367–384

    Google Scholar 

  • Bizouard C, Gambis D (2011) The combined solution C04 for Earth orientation parameters consistent with international terrestrial reference frame 2008. IERS notice. http://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf. Accessed 28 July 2015

  • Blewitt G (1989) Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J Geophys Res 94(B8):10187–10203

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(8):L07304

    Google Scholar 

  • Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J Geophys Res 102(B9):20489–20502

    Article  Google Scholar 

  • Collins P (2008) Isolating and estimating undifferenced GPS integer ambiguities. In: Proceedings of ION national technical meeting. San Diego, US, pp 720–732

  • Dach R, Schaer S, Lutz S, Bock H, Orliac E, Prange L, Thaller D, Mervart L, Jäggi A, Beutler G, Brockmann E, Ineichen D, Wiget A, Weber G, Habrich H, Ihde J, Steigenberger P, Hugentobler U (2012) Annual Center Reports: Center for Orbit Determination in Europe (CODE). In: Meindl M, Dach R, Jean Y, Institute Astronomical, University of Bern (eds) International GNSS Service, Technical Report 2011. IGS Central Bureau, Pasadena, California, pp 29–40

  • Dai L (2000) Dual-frequency GPS/GLONASS real-time ambiguity resolution for medium-range kinematic positioning. ION GPS 2000, Salt Lake City, UT, pp 1071–1080

  • Dilssner F, Springer T, Gienger G, Dow J (2011) The GLONASS-M satellite yaw-attitude model. Adv Space Res 47(1):160–171

    Article  Google Scholar 

  • Dong D, Bock Y (1989) Global Positioning System network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J Geophys Res 94(B4):3949–3966

    Article  Google Scholar 

  • Dow J, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4):191–198

    Article  Google Scholar 

  • Doucet A, Freitas N, Gordon N (2001) Sequential Monte Carlo methods in practice. Springer, New York

    Book  Google Scholar 

  • Fritsche M, SoŚnica K, Rodríguez-Solano C, Steigenberger P, Wang K, Dietrich R, Dach R, Hugentobler U, Rothacher M (2014) Homogeneous reprocessing of GPS, GLONASS and SLR observations. J Geod 88(8):625–642

    Article  Google Scholar 

  • Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine J, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82(7):331–346

    Article  Google Scholar 

  • Ge M, Gendt G, Dick G, Zhang FP (2005) Improving carrier-phase ambiguity resolution in global GPS network solutions. J Geod 79(1–3):103–110

    Article  Google Scholar 

  • Ge M, Gendt G, Dick G, Zhang F, Rothacher M (2006) A new data processing strategy for huge GNSS global networks. J Geod 80(4):199–203

    Article  Google Scholar 

  • Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008) Resolution of GPS phase ambiguities in precise point positioning (PPP) with daily observations. J Geod 82(8):389–399

    Article  Google Scholar 

  • Gendt G, Ge M, Nischan T, Uhlemann M, Beeskow G, Brandt A (2012) Annual Center Reports: GeoForschungsZentrum (GFZ). In: Meindl M, Dach R, Jean Y, Institute Astronomical, University of Bern (eds) International GNSS Service, Technical Report 2011. IGS Central Bureau, Pasadena, California, pp 62–66

  • Geng J, Meng X, Dodson A, Teferle F (2010) Integer ambiguity resolution in precise point positioning: method comparison. J Geod 84(10):569–581

    Article  Google Scholar 

  • Geng J, Shi C, Ge M, Dodson A, Lou Y, Zhao Q, Liu J (2012) Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. J Geod 86(9):579–589

    Article  Google Scholar 

  • Gordon NJ, Salmond DJ, Smith AF (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEE Proceedings-F (Radar and Signal Processing), vol 140, pp 107–113

  • Griffiths J, Ray J (2009) On the precision and accuracy of IGS orbits. J Geod 83(3–4):277–287

    Article  Google Scholar 

  • Gustafsson F, Gunnarsson F, Bergman N, Forssell U, Jansson J, Karlsson R, Nordlund PJ (2002) Particle filters for positioning, navigation, and tracking. IEEE Trans Signal Process 50(2):425–437

    Article  Google Scholar 

  • Han S, Dai L, Rizos C (1999) A new data processing strategy for combined GPS/GLONASS carrier phase-based positioning. In: Proceedings of ION GPS 1999, pp 1619–1627

  • ICD (2008) GLONASS Interface Control Document, 5.1 edn, Russian Institute of Space Device Engineering, Moscow

  • Ineichen D, Springer T, Beutler G (2001) Combined processing of the IGS and the IGEX network. J Geod 75(13):575–586

    Article  Google Scholar 

  • Jean Y, Dach, R (Eds) (2015) Astronomical Institute, University of Bern (eds) International GNSS Service, Technical Report 2014, IGS Central Bureau, Pasadena, California

  • Kitagawa G (1996) Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J Comput Graph Stat 5(1):1–25

    Google Scholar 

  • Kozlov D, Tkachenko M, Tochilin A (2000) Statistical characterization of hardware biases in GPS/GLONASS receivers. In: Proceedings of ION GPS-2000, pp 817–826

  • Kuang D, Bar-Sever YE, Bertiger WI, Hurst KJ, Zumberge JF (2001) GPS-assisted GLONASS orbit determination. J Geod 75(13):569–574

    Article  Google Scholar 

  • Laurichesse D, Mercier F, Berthias JP, Broca P, Cerri L (2009) Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navig J Inst Navig 56(2):135–149

    Article  Google Scholar 

  • Leick A (1998) GLONASS satellite surveying. J Surv Eng 124(2):91–99

    Article  Google Scholar 

  • Li T, Wang J (2011) Comparing the mathematical models for GPS and GLONASS integration, International Global Navigation Satellite Systems Society Symposium-IGNSS, Sydney, Australia, 15–17 November

  • Li X, Ge M, Dai X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J Geod 89(7):607–635

    Article  Google Scholar 

  • Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2B):603–609

    Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6):394–415

    Article  Google Scholar 

  • Melbourne WG (1985) The case for ranging in GPS-based geodetic systems. In: Proceedings of first international symposium on precise positioning with the global positioning system, US, pp 373–386

  • Mervart L (1995) Ambiguity resolution techniques in geodetic and geodynamic applications of the Global Positioning System. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 53. Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS conventions 2010. No. 36 in IERS Technical Note, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany

  • Pratt M, Burke B, Misra P (1998) Single-epoch integer ambiguity resolution with GPS-GLONASS L1–L2 Data. In: Proceedings of ION GNSS 1998, pp 389–398

  • Rebischung P, Griffiths J, Ray J, Schmid R, Collilieux X, Garayt B (2012) IGS08: the IGS realization of ITRF2008. GPS Solut 16(4):483–494

    Article  Google Scholar 

  • Reußner N, Wanninger L (2011) GLONASS inter-frequency biases and their effects on RTK and PPP phase ambiguity resolution. In: Proceedings of ION GNSS 2011, pp 712–716

  • Reußner N, Wanninger L (2012) GLONASS inter-frequency code biases and PPP phase ambiguity resolution. IGS Workshop, 2012, Olsztyn, Poland 23. 07. 2012–27. 07. 2012

  • Revnivykh S (2010) GLONASS Status and Progress. In: Proceedings of ION GNSS 2010, pp. 609–633

  • Romero I, Garcia C, Kahle R, Dow J, Martin-Mur T (2002) Precise orbit determination of GLONASS satellites at the European space agency. Adv Space Res 30(2):281–287

    Article  Google Scholar 

  • Roßbach U (2000) Positioning and navigation using the Russian satellite system GLONASS. PhD Thesis, Universitaet der Bundeswehr Muenchen

  • Schaer S, Brockmann E, Beutler G, Meindl M (2010) Rapid static positioning using GPS and GLONASS. Bull Geodesy Geomatics LXIX(2–3):179–194

    Google Scholar 

  • Schaffrin B, Bock Y (1988) A unified scheme for processing GPS dual-band phase observations. Bull Geod 62(2):142–160

    Article  Google Scholar 

  • Shi C, Zhao Q, Geng J, Lou Y, Ge M, Liu J (2008) Recent development of PANDA software in GNSS data processing. In: Proceedings of SPIE 7285, International Conference on Earth Observation Data Processing and Analysis (ICEODPA), 72851S (December 29, 2008). doi:10.1117/12.816261

  • Shi C, Yi W, Song W, Lou Y, Yao Y, Zhang R (2013) GLONASS pseudorange inter-channel biases and their effects on combined GPS/GLONASS precise point positioning. GPS Solut 17(4):439–451

    Article  Google Scholar 

  • Slater JA, Weber R, Fragner D (2004) The IGS GLONASS Pilot Project–transitioning an experiment into an operational GNSS service. In: Proceedings of ION GNSS 2004, pp 1749–1757

  • Sleewagen J, Simsky A, Wilde WD, Boon F, Willems T (2012) Demystifying GLONASS inter-frequency carrier phase biases. InsideGNSS 7(3):57–61

    Google Scholar 

  • Springer TA, Beutler G, Rothacher M (1999) A new solar radiation pressure model for the GPS satellites. GPS Solut 3(2):50–62

    Article  Google Scholar 

  • Takasu T, Yasuda A (2009) Development of the low-cost RTK-GPS receiver with an open source program package rtklib. In: Proceedings of International Symposium on GPS/GNSS, Jeju, Korea

  • Teunissen P (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82

    Article  Google Scholar 

  • Teunissen P, Verhagen S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Surv Rev 41(312):138–151

    Article  Google Scholar 

  • Tian Y, Ge M, Neitzel F (2015) Particle filter-based estimation of inter-frequency phase bias for real-time GLONASS integer ambiguity resolution. J Geod 89(13):1145–1158

    Article  Google Scholar 

  • Wanninger L, Wallstab-Freitag S (2007) Combined processing of GPS, GLONASS, and SBAS code phase and carrier phase measurements. In: Proceedings of ION GNSS 2007, pp 866–875

  • Wanninger L (2012) Phase inter-frequency biases of GLONASS receivers. J Geod 86(2):139–148

    Article  Google Scholar 

  • Wang J (2000) An approach to GLONASS ambiguity resolution. J Geod 74(6):421–430

    Article  Google Scholar 

  • Wang J, Rizos C, Stewart MP, Leick A (2001) GPS and GLONASS integration: modeling and ambiguity resolution issues. GPS Solut 5(1):55–64

    Article  Google Scholar 

  • Weber R, Slater JA, Fragner E, Glotov V, Habrich H, Romero I, Schaer S (2005) Precise GLONASS orbit determination within the IGS/IGLOS—Pilot Project. Adv Space Res 36(3):369–375

    Article  Google Scholar 

  • Willis P, Beutler G, Gurtner W, Hein G, Neilan RE, Noll C, Slater J (1999) IGEX: international GLONASS experiment scientific objectives and preparation. Adv Space Res 23(4):659–663

    Article  Google Scholar 

  • Wu JT, Wu SC, Hajj GA, Bertiger WI, Lichten SM (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18:91–98

    Google Scholar 

  • Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceedings of first international symposium on precise positioning with the global positioning system, US, pp 403–412

  • Yi W (2015) Research on rapid convergence and integer ambiguity resolution method for Multi-GNSS precise point positioning. PhD thesis, Wuhan University (in Chinese)

  • Zhang S, Zhang K, Wu S, Li B (2011) Network-based RTK positioning using integrated GPS and GLONAS observations. International global navigation satellite systems society symposium-IGNSS, Sydney, Australia, 15–17 November

  • Zinoviev AE, Veitsel AV, Dolgin DA (2009) Renovated GLONASS: improved performances of GNSS receivers. In: Proceedings of ION GNSS 2009, pp 3271–3277

  • Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102(B3):5005–5017

    Article  Google Scholar 

Download references

Acknowledgments

Yang Liu is financially supported by the China Scholarship Council (CSC) for his study at the German Research Centre for Geosciences (GFZ). This work is supported by the National Nature Science Foundation of China (No. 41374034) and the National “863 Program” of China (Grant No. 2014AA123101). Dr. Lei Wang from Queensland University of Technology and Mr. Yumiao Tian from Technische Universität Berlin are gratefully acknowledged for valuable discussions. The scholarship from Collaborative Innovation Center of Geospatial Technology of China is gratefully acknowledged. We are grateful to four anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidong Lou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ge, M., Shi, C. et al. Improving integer ambiguity resolution for GLONASS precise orbit determination. J Geod 90, 715–726 (2016). https://doi.org/10.1007/s00190-016-0904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0904-y

Keywords