Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Object-oriented Interpretation of the EAT System

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract.

In a previous paper we characterized, in the Category Theory setting, a class of implementations of Abstract Data Types, which has been suggested by the way of programming in the EAT system. (EAT, Effective Algebraic Topology, is one of Sergeraert’s systems for effective homology and homotopy computation.) This characterization was established using classical tools, in an unrelated way to the current mainstream topics in the field of Algebraic Specifications. Looking for a connection with these topics, we have found, rather unexpectedly, that our approach is related to some object-oriented formalisms, namely hidden specifications and the coalgebraic view. In this paper, we explore these relations making explicit the implicit object-oriented features of the EAT system and generalizing the data structure analysis we had previously done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abadi, M., Cardelli, L.: A theory of objects, Springer, 1996

  2. Alagar, V.S., Periyasamy, K.: Specification of Software Systems, Springer, 1998

  3. Aransay, J., Ballarin, C., Rubio, J.: Mechanising proofs in Homological Algebra. Calculemus Autumn School: Poster Abstracts, SEKI Report SR- 02–06, 2002, pp. 13–18

  4. Barr, M.: Terminal coalgebras in well-founded set theory. Theor. Comput. Sci. 114, 299–315 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Börger, E. (ed.) Specification and Validation Methods. Clarendon Press, 1995

  6. Burstall, R., Diaconescu, R.: Hiding and behaviour: an institutional approach. Essays in Honour of C.A.R. Hoare, Prentice Hall, 1994, pp. 75–92

  7. Cardelli, L.: A semantics of multiple inheritance. Inf. Comput. 76, 138–164 (1985)

    MATH  Google Scholar 

  8. Cardelli, L., Mitchell, J.C.: Operations on records. Math. Struct. Comput. Sci. 1, 3–48 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Cîrstea, C.: Coalgebra semantics for hidden algebra: parameterised objects and inheritance. Lecture Notes in Comput. Sci. 1376, 174–189 (1997)

    Google Scholar 

  10. Cîrstea, C.: Semantic constructions for the specification of objects. Lecture Notes in Comp. Sci. 1589, 63–78 (1999)

    Google Scholar 

  11. Cook, W.R.: Object-oriented programming versus abstract data types. Lecture Notes in Comput. Sci. 489, 151–178 (1991)

    Google Scholar 

  12. Diers, Y.: Familles universelles de morphismes. Annales de la Société Scientifique de Bruxelles 93, 175–195 (1979)

    MathSciNet  MATH  Google Scholar 

  13. Domínguez, C., Lambán, L., Pascual, V., Rubio, J.: Hidden Specification of a Functional System. Lecture Notes in Comput. Sci. 2178, 555–569 (2001)

    Google Scholar 

  14. Domínguez, C., Rubio, J.: Modeling inheritance as coercion in a Symbolic Computation System. In Proceedings ISSAC’2001, ACM Press, 2001, pp. 107–115

  15. Dousson, X., Sergeraert, F., Siret, Y.: The Kenzo program. http://www-fourier.ujf-grenoble.fr/∼Sergerat/Kenzo/. Institut Fourier, Grenoble, 1999

  16. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specifications 1, Springer, 1985

  17. Giarratana, V., Gimona, F., Montanari, U.: Observability concepts in abstract data type specifications. Lecture Notes in Comput. Sci. 45, 576–587 (1976)

    MATH  Google Scholar 

  18. Goguen, J.: Types as theories. In Topology and category theory in computer science, Oxford University Press, 1991, pp. 357–390

  19. Goguen, J., Diaconescu, R.: Towards an algebraic semantics for the object paradigm. Lecture Notes in Comput. Sci. 785, 1–29 (1994)

    MATH  Google Scholar 

  20. Goguen, J., Malcolm, G.: A hidden agenda. Theor. Comput. Sci. 245(1), 55–101 (2000)

    Article  MATH  Google Scholar 

  21. Goguen, J., Meseguer, J.: Universal realization, persistent interconnection and implementation of abstract modules. Lecture Notes in Comput. Sci. 140, 265–281 (1982)

    MATH  Google Scholar 

  22. Graham, P.: ANSI Common Lisp. Prentice Hall, 1996

  23. Hennicker, R.: Observational Implementations. Lecture Notes in Comput. Sci. 349, 59–71 (1989)

    Google Scholar 

  24. Hoare, C.A.R.: Proofs of correctness of data representations. Acta Inf. 1, 271–281 (1972)

    MATH  Google Scholar 

  25. Jacobs, B.: Mongruences and cofree coalgebras. Lecture Notes in Comput. Sci. 936, 245–260 (1995)

    Google Scholar 

  26. Jenks, R.D., Sutor, R.S.: AXIOM: the scientific computation system. Springer, 1992

  27. Lambán, L., Pascual, V., Rubio, J.: Specifying implementations. In Proceedings ISSAC’99, ACM Press, 1999, pp. 245–251

  28. Lambán, L., Pascual, V., Rubio, J.: Locally effective objects and abstract data types. Preprint, 2002

  29. Loeckx, J., Ehrich, H.D., Wolf, M.: Specification of Abstract Data Types. Wiley–Teubner, 1996

  30. Malcolm, G.: Behavioural equivalence, bisimulation and minimal realisation. Lecture Notes in Comput. Sci. 1130, 359–378 (1996)

    Google Scholar 

  31. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential types. ACM Transactions on Programming Languages and Systems 10, 470–502 (1988)

    Article  Google Scholar 

  32. Nissanke, N.: Formal Specification. Springer, 1999

  33. Nivela, P., Orejas, F.: Initial behavioural semantics for algebraic specifications. Lecture Notes in Comput. Sci. 332, 184–207 (1988)

    MATH  Google Scholar 

  34. Orejas, F., Navarro, M., Sánchez, A.: Implementation and Behavioural Equivalence: a Survey. Lecture Notes in Comput. Sci. 655, 93–125 (1996)

    Google Scholar 

  35. Orejas, F., Nivela, P., Ehrig, H.: Semantical constructions for categories of behavioural specifications. Lecture Notes in Comput. Sci. 393, 220–241 (1989)

    Google Scholar 

  36. Pascual, V.: Objetos Localmente Efectivos y Tipos Abstractos de Datos, Ph.D. Thesis, Universidad de La Rioja, 2002

  37. Paulson, L.C.: ML for the working programmer. Cambridge University Press, 2000

  38. Reichel, H.: Behavioural equivalence – a unifying concept for initial and final specification methods. Arato M., Varga L., (eds.) Third Hungarian Computer Science Conference, Budapest, Akademiai Kiado, 1981, pp. 27–39

  39. Reichel, H.: An approach to object semantics based on terminal coalgebras. Math. Struct. Comput. Sci. 5, 129–152 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Rubio, J.: Homologie Effective des espaces de lacets itérés: un logiciel. Thèse, Institut Fourier, Grenoble, 1991

  41. Rubio, J., Sergeraert, F.: Locally effective objects and algebraic topology. In Computational Algebraic Geometry, Birkhaüser, 1993, pp. 235–251

  42. Rubio, J., Sergeraert, F., Siret, Y.: EAT: Symbolic Software for Effective Homology Computation. ftp://fourier.ujf-grenoble.fr/pub/EAT. Institut Fourier, Grenoble, 1997

  43. Rubio, J., Sergeraert, F., Siret, Y.: Overview of EAT, a System for Effective Homology Computation, The SAC Newsletter. 3, 69–79 (1998)

  44. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1), 3–80 (2000)

    Article  MATH  Google Scholar 

  45. Sannella, D., Tarlecki, A.: On observational equivalence and algebraic specification. J. Comput. Syst. Sci. 34, 150–178 (1987)

    MathSciNet  MATH  Google Scholar 

  46. Sergeraert, F.: Functional coding and effective homology. Astérisque 192, 57–67 (1990)

    MathSciNet  MATH  Google Scholar 

  47. Sergeraert, F.: The computability problem in algebraic topology. Advances in Math. 104, 1–29 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Smith, D.R.: Designware: Software development by refinement. In Proceedings of the Eighth International Conference on Category Theory and Computer Science, 1999

  49. Steele, G.: Common Lisp. The language. Second Edition. Digital Press, 1990

  50. Tarlecki, A., Burstall, R.M., Goguen, J.A.: Some fundamental algebraic tools for the semantics of computation: Part 3. Indexed categories. Theor. Comput. Sci. 91, 239–264 (1991)

    Article  MATH  Google Scholar 

  51. Wand, M.: Final algebra semantics and data type extensions. J. Comput. Syst. Sci. 19, 27–44 (1979)

    MathSciNet  MATH  Google Scholar 

  52. Wegner, P.: Concepts and paradigms of object-oriented programming. OOPS Messenger 1, 7–87 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laureano Lambán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambán, L., Pascual, V. & Rubio, J. An Object-oriented Interpretation of the EAT System. AAECC 14, 187–215 (2003). https://doi.org/10.1007/s00200-003-0129-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-003-0129-1

Keywords