Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A multivariate based threshold ring signature scheme

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In Sakumoto et al. (CRYPTO 2011, LNCS, vol 6841. Springer, Berlin, pp 706–723, 2011), presented a new multivariate identification scheme, whose security is based solely on the MQ-Problem of solving systems of quadratic equations over finite fields. In this paper we extend this scheme to a threshold ring identification and signature scheme. Our scheme is the first multivariate scheme of this type and generally one of the first multivariate signature schemes with special properties. Despite of the fact that we need more rounds to achieve given levels of security, the signatures are at least twice shorter than those obtained by other post-quantum (e.g. code based) constructions. Furthermore, our scheme offers provable security, which is quite a rare fact in multivariate cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. To achieve given levels of security, it might be necessary to run the identification scheme several (say \(r\)) times. In this case, the challenge is given as \(Ch={\fancyscript{R}}(m, \mathrm{com}_1, \ldots , \mathrm{com}_M)\) and the signature has the form \(\sigma =(\mathrm{com}_1, \ldots , \mathrm{com}_r, Rsp_1, \ldots , Rsp_r)\).

  2. In practice this is realized by a collision- and pre-image resistant hash function.

  3. In fact, an affine system is called regular if and only if its homogeneous part of highest degree is regular [3]. From this definition one can obtain complexity estimates for affine systems.

  4. For 193 rounds (corresponds to 80 bit security) the length of the hash value must be \(\ge 386\) bits.

References

  1. Aguilar, C., Cayrel, P.L., Gaborit, P., Laguillaumie, F.: A new efficient threshold ring signature scheme based on coding theory. IEEE Trans. Inf. Theory 57(7), 4833–4842 (2011)

    Article  Google Scholar 

  2. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post Quantum Cryptography. Springer, Berlin (2009)

    MATH  Google Scholar 

  3. Bettale, L., Faugère, J.C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. J. Math. Cryptol. 177–197 (2009)

  4. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key engines: -cryptosystems as replacement for elliptic curves? In: CHES, LNCS vol. 5154, pp. 45–61. Springer, Berlin (2008)

  5. Bouillaguet, C., Chen, H.-C., Cheng, C.-M., Chou, T., Niederhagen, R., Shamir, A., Yang, B.-Y.: Fast exhaustive search for polynomial systems in F2. In: CHES 2010, LNCS vol. 6225, pp. 203–218. Springer, Berlin (2010)

  6. Boyen, X.: Mesh signatures. In: EUROCRYPT 2007, LNCS vol. 4515, pp. 210–227. Springer, Berlin (2007)

  7. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and their application to ad-hoc groups. In: CRYPTO 2002, LNCS vol. 2442, pp. 465–480. Springer, Berlin (2002)

  8. Cayrel, P.L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring signature scheme. In: LATINCRYPT 2010, LNCS vol. 6212, pp. 255–272. Springer, Berlin (2010)

  9. Chen, A.I.T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate pkcs on modern x86 cpus. In: CHES 2009, LNCS vol. 5747, pp. 33–48. Springer, Berlin (2009)

  10. Ding, J., Gower, J.E., Schmidt, D.: Multivariate Public Key Cryptosystems. Springer, Berlin (2006)

    MATH  Google Scholar 

  11. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

  12. Fiat, A., Shamir, A.: How to Prove Yourself. In: CRYPTO 1986, LNCS vol. 263, pp. 186–194. Springer, Berlin (1986)

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  14. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme. In: Krawzyck, H. (ed.) CRYPTO 1998, LNCS vol. 1462, pp. 257–266. Springer, Heidelberg (1998)

    Google Scholar 

  15. Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: ICISC 2003, LNCS vol. 2971, pp. 352–369. Springer, Berlin (2003)

  16. Nachef, V., Patarin, J., Volte, E.: Zero-knowledge for multivariate polynomials. In: Latincrypt 2012, LNCS vol. 7533, pp. 194–213. Springer, Berlin (2012)

  17. Pointcheval, P., Stern, J.: Security proofs for signature schemes. In: EUROCRYPT 96, LNCS vol. 1070, pp. 387–398. Springer, Berlin (1996)

  18. Sakumoto, K.: Public-key identification schemes based on multivariate cubic polynomials. In: PKC 2012, LNCS vol. 7293, pp. 172–189. Springer, Berlin (2012)

  19. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on multivariate quadratic polynomials. In: CRYPTO 2011, LNCS vol. 6841, pp. 706–723. Springer, Berlin (2011)

  20. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Pierre-Louis Cayrel and the anonymous referees (both of PKC 2012 and AAECC) for their comments which helped to improve the paper. The first author thanks the Horst Görtz Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Petzoldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzoldt, A., Bulygin, S. & Buchmann, J. A multivariate based threshold ring signature scheme. AAECC 24, 255–275 (2013). https://doi.org/10.1007/s00200-013-0190-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-013-0190-3

Keywords

Mathematics Subject Classification (2000)