Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

2- and 3-Modular lattice wiretap codes in small dimensions

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

A recent line of work on lattice codes for Gaussian wiretap channels introduced a new lattice invariant called secrecy gain as a code design criterion which captures the confusion that lattice coding produces at an eavesdropper. Following up the study of unimodular lattice wiretap codes (Lin and Oggier in IEEE Trans Inf Theory 59(6):3295–3303, 2013), this paper investigates 2- and 3-modular lattices which can be constructed from linear codes and compares them with unimodular lattices. Most even 2- and 3-modular lattices are found to have better performance (that is, a higher secrecy gain) than the best unimodular lattices in dimension \(n,\ 2\le n\le 23\). Odd 2-modular lattices are considered, too, and three lattices are found to outperform the best unimodular lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. A k-dimensional lattice can be defined in a more general setting by a free abelian group of rank k.

References

  1. Lin, F., Oggier, F.: A classification of unimodular lattice wiretap codes in small dimensions. IEEE Trans. Inf. Theory 59(6), 3295–3303 (2013)

    Article  MathSciNet  Google Scholar 

  2. Wyner, A.D.: The wire-tap channel. Bell. Syst. Tech. J. 54(8), 1355–1387 (1975)

  3. Liang, Y., Poor, H.V., Shamai, S.: Information theoretic security. Found Trends Commun Inform Theory 5(4–5), 355–580 (2009). doi: 10.1561/0100000036

  4. Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. Bell Syst. Tech. J. 63(10), 2135–2157 (1984)

    MATH  Google Scholar 

  5. Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S.W., Merolla, J.-M.: Applications of LDPC codes to the wiretap channel. IEEE Trans. Inf. Theory 53(8), 2933–2945 (2007)

    Article  MathSciNet  Google Scholar 

  6. Mahdavifar, Hessam, Vardy, Alexander: Achieving the secrecy capacity of wiretap channels using polar codes. IEEE Trans. Inf. Theory 57(10), 6428–6443 (2011)

    Article  MathSciNet  Google Scholar 

  7. Ong, S.S., Oggier, F.: Wiretap lattice codes from number fields with no small norm elements. Des. Codes Cryptogr. 73(2), 425–440 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheraghchi, M., Didier, F., Shokrollahi, A.: Invertible extractors and wiretap protocols. IEEE Trans. Inf. Theory 58(2), 1254–1274 (2012)

    Article  MathSciNet  Google Scholar 

  9. Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. Adv. Cryptol. CRYPTO, 7417, 294–311 (2012)

  10. Leung-Yan-Cheong, S.K., Hellman, M.E.: The Gaussian wire-tap channel. IEEE Trans. Inf. Theory IT–24(4), 451–456 (1978)

    Article  MathSciNet  Google Scholar 

  11. Klinc, D., Ha, J., McLaughlin, S., Barros, J., Kwak, B.: LDPC codes for the Gaussian wiretap channel. IEEE Trans. Inf. Foren. Secur. 6(3), 532–540 (2011)

    Article  Google Scholar 

  12. Liu, R., Poor, H.V., Spasojevic, P., Liang, Y.: Nested codes for secure transmission. In: Proceedings of PIMRC, pp. 1–5 (2008)

  13. Belfiore, J.-C., Oggier, F.: Secrecy gain: a wiretap lattice code design. In: ISITA (2010). arXiv:1004.4075v2 [cs.IT]

  14. Ling, C., Luzzi, L., Belfiore, J.-C., Stehle, D.: Semantically secure lattice codes for the gaussian wiretap channel. IEEE Trans. Inf. Forens. Secur. 60(10), 6399–6416 (2014)

    Article  MathSciNet  Google Scholar 

  15. Belfiore, J.-C., Solé, P.: Unimodular lattices for the Gaussian Wiretap Channel. In: ITW 2010, Dublin. arXiv:1007.0449v1 [cs.IT]

  16. Oggier, F., Belfiore, J.-C., Solé, P.: Lattice Codes for the Wiretap Gaussian Channel: Construction and Analysis. arXiv:1103.4086v3 [cs.IT]

  17. Ernvall-Hytönen, A.-M.: On a conjecture by Belfiore and Solé on some lattices. IEEE Trans. Inf. Theory 58(9), 5950–5955 (2012)

    Article  Google Scholar 

  18. Ernvall-Hytönen, A.-M.: Some results related to the conjecture by Belfiore and Solé. IEEE Trans. Inf. Theory 60(5), 2805–2812 (2014)

  19. Lin, F., Oggier, F.: Gaussian wiretap lattice codes from binary self-dual codes. In: 2012 IEEE Information Theory Workshop (ITW) pp. 662–666

  20. Pinchak, J.: Wiretap codes: families of lattices satisfying the Belfiore–Solé secrecy function conjecture. In: 2013 IEEE International Symposium on Information Theory (ISIT) pp. 2617–2620

  21. Pinchak, J., Sethuraman, B.A.: The belfiore-Solé conjecture and a certain technique for verifying it for a given lattice. In: Proceedings of ITA 2014. http://www.csun.edu/~asethura/papers/ITA_2014Mod

  22. Ernvall-Hytönen, A.-M., Sethuraman, B.A.: Counterexample to the Generalized Belfiore–Solé Secrecy Function Conjecture for \(\ell \)-Modular Lattices. arXiv:1409.3188v2 [cs.IT]

  23. Lin, F., Oggier, F: Secrecy gain of Gaussian wiretap codes from 2-and 3-modular lattices. In: 2012 IEEE International Symposium on Information Theory (ISIT) pp. 1747–1751

  24. Quebbemann, H.-G.: Modular lattices in Euclidean spaces. J. Number Theory 54, 190–202 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rains, E.M., Sloane, N.J.A.: The shadow theory of modular and unimodular lattices. J. Number Theory 73, 359–389 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  27. Stewart, I.N., Tall, D.O.: Algebraic Number Theory. Chapman and Hall, London (1979)

    Book  MATH  Google Scholar 

  28. Bachoc, Christine: Applications of coding theory to the construction of modular lattices. J. Comb. Theory Ser. A 78, 92–119 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chapman, R., Dougherty, S.T., Gaborit, P., Solé, P.: 2-Modular lattices from ternary codes. J. de Théorie des Nombres de Bordeaux tome 14(1), 73–85 (2002)

    Article  MATH  Google Scholar 

  30. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Graduate Texts in Math. No. 97, 2nd edn. Springer, New York (1993)

    Book  Google Scholar 

  31. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1998)

    Google Scholar 

  32. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, Berlin (1977)

    Google Scholar 

  33. Wolfram Research Inc.: Mathematica, Version 8.0. Wolfram Research Inc, Champaign, IL (2010)

  34. http://www.math.rwth-aachen.de/Gabriele.Nebe/LATTICES/

  35. http://magma.maths.usyd.edu.au/magma/

Download references

Acknowledgments

The research of F. Lin and of F. Oggier for this work is supported by the Singapore National Research Foundation under the Research Grant NRF-RF2009-07. The research of P. Solé for this work is supported by Merlion project 1.02.10. The authors would like to thank Christine Bachoc for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Oggier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Oggier, F. & Solé, P. 2- and 3-Modular lattice wiretap codes in small dimensions. AAECC 26, 571–590 (2015). https://doi.org/10.1007/s00200-015-0267-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-015-0267-2

Keywords