Abstract
A recent line of work on lattice codes for Gaussian wiretap channels introduced a new lattice invariant called secrecy gain as a code design criterion which captures the confusion that lattice coding produces at an eavesdropper. Following up the study of unimodular lattice wiretap codes (Lin and Oggier in IEEE Trans Inf Theory 59(6):3295–3303, 2013), this paper investigates 2- and 3-modular lattices which can be constructed from linear codes and compares them with unimodular lattices. Most even 2- and 3-modular lattices are found to have better performance (that is, a higher secrecy gain) than the best unimodular lattices in dimension \(n,\ 2\le n\le 23\). Odd 2-modular lattices are considered, too, and three lattices are found to outperform the best unimodular lattices.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
A k-dimensional lattice can be defined in a more general setting by a free abelian group of rank k.
References
Lin, F., Oggier, F.: A classification of unimodular lattice wiretap codes in small dimensions. IEEE Trans. Inf. Theory 59(6), 3295–3303 (2013)
Wyner, A.D.: The wire-tap channel. Bell. Syst. Tech. J. 54(8), 1355–1387 (1975)
Liang, Y., Poor, H.V., Shamai, S.: Information theoretic security. Found Trends Commun Inform Theory 5(4–5), 355–580 (2009). doi: 10.1561/0100000036
Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. Bell Syst. Tech. J. 63(10), 2135–2157 (1984)
Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S.W., Merolla, J.-M.: Applications of LDPC codes to the wiretap channel. IEEE Trans. Inf. Theory 53(8), 2933–2945 (2007)
Mahdavifar, Hessam, Vardy, Alexander: Achieving the secrecy capacity of wiretap channels using polar codes. IEEE Trans. Inf. Theory 57(10), 6428–6443 (2011)
Ong, S.S., Oggier, F.: Wiretap lattice codes from number fields with no small norm elements. Des. Codes Cryptogr. 73(2), 425–440 (2014)
Cheraghchi, M., Didier, F., Shokrollahi, A.: Invertible extractors and wiretap protocols. IEEE Trans. Inf. Theory 58(2), 1254–1274 (2012)
Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. Adv. Cryptol. CRYPTO, 7417, 294–311 (2012)
Leung-Yan-Cheong, S.K., Hellman, M.E.: The Gaussian wire-tap channel. IEEE Trans. Inf. Theory IT–24(4), 451–456 (1978)
Klinc, D., Ha, J., McLaughlin, S., Barros, J., Kwak, B.: LDPC codes for the Gaussian wiretap channel. IEEE Trans. Inf. Foren. Secur. 6(3), 532–540 (2011)
Liu, R., Poor, H.V., Spasojevic, P., Liang, Y.: Nested codes for secure transmission. In: Proceedings of PIMRC, pp. 1–5 (2008)
Belfiore, J.-C., Oggier, F.: Secrecy gain: a wiretap lattice code design. In: ISITA (2010). arXiv:1004.4075v2 [cs.IT]
Ling, C., Luzzi, L., Belfiore, J.-C., Stehle, D.: Semantically secure lattice codes for the gaussian wiretap channel. IEEE Trans. Inf. Forens. Secur. 60(10), 6399–6416 (2014)
Belfiore, J.-C., Solé, P.: Unimodular lattices for the Gaussian Wiretap Channel. In: ITW 2010, Dublin. arXiv:1007.0449v1 [cs.IT]
Oggier, F., Belfiore, J.-C., Solé, P.: Lattice Codes for the Wiretap Gaussian Channel: Construction and Analysis. arXiv:1103.4086v3 [cs.IT]
Ernvall-Hytönen, A.-M.: On a conjecture by Belfiore and Solé on some lattices. IEEE Trans. Inf. Theory 58(9), 5950–5955 (2012)
Ernvall-Hytönen, A.-M.: Some results related to the conjecture by Belfiore and Solé. IEEE Trans. Inf. Theory 60(5), 2805–2812 (2014)
Lin, F., Oggier, F.: Gaussian wiretap lattice codes from binary self-dual codes. In: 2012 IEEE Information Theory Workshop (ITW) pp. 662–666
Pinchak, J.: Wiretap codes: families of lattices satisfying the Belfiore–Solé secrecy function conjecture. In: 2013 IEEE International Symposium on Information Theory (ISIT) pp. 2617–2620
Pinchak, J., Sethuraman, B.A.: The belfiore-Solé conjecture and a certain technique for verifying it for a given lattice. In: Proceedings of ITA 2014. http://www.csun.edu/~asethura/papers/ITA_2014Mod
Ernvall-Hytönen, A.-M., Sethuraman, B.A.: Counterexample to the Generalized Belfiore–Solé Secrecy Function Conjecture for \(\ell \)-Modular Lattices. arXiv:1409.3188v2 [cs.IT]
Lin, F., Oggier, F: Secrecy gain of Gaussian wiretap codes from 2-and 3-modular lattices. In: 2012 IEEE International Symposium on Information Theory (ISIT) pp. 1747–1751
Quebbemann, H.-G.: Modular lattices in Euclidean spaces. J. Number Theory 54, 190–202 (1995)
Rains, E.M., Sloane, N.J.A.: The shadow theory of modular and unimodular lattices. J. Number Theory 73, 359–389 (1998)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)
Stewart, I.N., Tall, D.O.: Algebraic Number Theory. Chapman and Hall, London (1979)
Bachoc, Christine: Applications of coding theory to the construction of modular lattices. J. Comb. Theory Ser. A 78, 92–119 (1997)
Chapman, R., Dougherty, S.T., Gaborit, P., Solé, P.: 2-Modular lattices from ternary codes. J. de Théorie des Nombres de Bordeaux tome 14(1), 73–85 (2002)
Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Graduate Texts in Math. No. 97, 2nd edn. Springer, New York (1993)
Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1998)
Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, Berlin (1977)
Wolfram Research Inc.: Mathematica, Version 8.0. Wolfram Research Inc, Champaign, IL (2010)
Acknowledgments
The research of F. Lin and of F. Oggier for this work is supported by the Singapore National Research Foundation under the Research Grant NRF-RF2009-07. The research of P. Solé for this work is supported by Merlion project 1.02.10. The authors would like to thank Christine Bachoc for helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lin, F., Oggier, F. & Solé, P. 2- and 3-Modular lattice wiretap codes in small dimensions. AAECC 26, 571–590 (2015). https://doi.org/10.1007/s00200-015-0267-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-015-0267-2