Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Real root finding for low rank linear matrices

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We consider \(m \times s\) matrices (with \(m\ge s\)) in a real affine subspace of dimension n. The problem of finding elements of low rank in such spaces finds many applications in information and systems theory, where low rank is synonymous of structure and parsimony. We design computer algebra algorithms, based on advanced methods for polynomial system solving, to solve this problem efficiently and exactly: the input are the rational coefficients of the matrices spanning the affine subspace as well as the expected maximum rank, and the output is a rational parametrization encoding a finite set of points that intersects each connected component of the low rank real algebraic set. The complexity of our algorithm is studied thoroughly. It is polynomial in \(\left( {\begin{array}{c}n+m(s-r)\\ n\end{array}}\right) \). It improves on the state-of-the-art in computer algebra and effective real algebraic geometry. Moreover, computer experiments show the practical efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  2. Arbarello, E., Cornalba, M., Griffiths, P.A.: Geometry of Algebraic Curves: Volume II with a Contribution by Joseph Daniel Harris, vol. 267. Springer, Berlin (2011)

    Book  Google Scholar 

  3. Bank, B., Giusti, M., Heintz, J., Lecerf, G., Matera, G., Solernó, P.: Degeneracy loci and polynomial equation solving. Found. Comput. Math. 15(1), 159–184 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bank, B., Giusti, M., Heintz, J., Mbakop, G.-M.: Polar varieties and efficient real elimination. Math. Z. 238(1), 115–144 (2001)

    Article  MathSciNet  Google Scholar 

  5. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic in Mathematics. Algorithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Berlin (2006)

    Book  Google Scholar 

  6. Bonnard, B., Faugère, J-C., Jacquemard, A., Safey El Din, M., Verron, T.: Determinantal sets, singularities and application to optimal control in medical imagery. In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’16, pp. 103–110, ACM, New York (2016)

  7. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Automata Theory and Formal Languages (Second GI Conf., Kaiserslautern, 1975), pp. 134–183. Lecture Notes in Computer Science, vol. 33. Springer, Berlin (1975)

    Google Scholar 

  8. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, Berlin (1995)

    MATH  Google Scholar 

  9. Faugère, J-C.: Fgb: a library for computing Gröbner bases. In: International Congress on Mathematical Software, pp. 84–87. Springer, Berlin (2010)

    Chapter  Google Scholar 

  10. Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

    Article  Google Scholar 

  11. Faugère, J.-C., Safey El Din, M., Spaenlehauer, P.-J.: On the complexity of the generalized minrank problem. J. Symb. Comput. 55, 30–58 (2013)

    Article  MathSciNet  Google Scholar 

  12. Gianni, P., Mora, T.: Algebraic solution of systems of polynomial equations using Groebner bases. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, vol. 356 of Lecture Notes in Computer Science, pp. 247–257. Springer, Berlin (1989)

    Chapter  Google Scholar 

  13. Giusti, M., Lecerf, G., Salvy, B.: A Gröbner-free alternative for polynomial system solving. J. Complex. 17(1), 154–211 (2001)

    Article  Google Scholar 

  14. Greuet, A., Safey El Din, M.: Probabilistic algorithm for the global optimization of a polynomial over a real algebraic set. SIAM J. Optim. 24(3), 1313–1343 (2014)

    Article  MathSciNet  Google Scholar 

  15. Grigoriev, D., Vorobjov, N.: Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput. 5(1/2), 37–64 (1988)

    Article  MathSciNet  Google Scholar 

  16. Harris, J.: Algebraic Geometry: A First Course, vol. 133. Springer, Berlin (1992)

    Book  Google Scholar 

  17. Hartshorne, R.: Algebraic Geometry, vol. 52. Springer, Berlin (2013)

    MATH  Google Scholar 

  18. Henrion, D., Naldi, S., Safey El Din, M.: Real root finding for determinants of linear matrices. J. Symb. Comput. 74, 205–238 (2015)

    Article  MathSciNet  Google Scholar 

  19. Henrion, D., Naldi, S., Safey El Din, M.: Real root finding for rank defects in linear Hankel matrices. In: Proceedings of the 40th International Symposium on Symbolic and Algebraic Computation, Bath (UK), pp. 221–228 (2015)

  20. Henrion, D., Naldi, S., Safey El Din, M.: Exact algorithms for linear matrix inequalities. SIAM J. Optim. 26(4), 2512–2539 (2016)

    Article  MathSciNet  Google Scholar 

  21. Henrion, D., Naldi, S., Safey El Din, M.: Spectra: a Maple library for solving linear matrix inequalities in exact arithmetic. Optim. Methods Softw. 34(1), 62–78 (2019)

    Article  MathSciNet  Google Scholar 

  22. Jeronimo, G., Matera, G., Solernó, P., Waissbein, A.: Deformation techniques for sparse systems. Found. Comput. Math. 9(1), 1–50 (2009)

    Article  MathSciNet  Google Scholar 

  23. Kileel, J., Kukelova, Z., Pajdla, T., Sturmfels, B.: Distortion varieties. Found. Comput. Math. 18(4), 1043–1071 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kronecker, L.: Grundzüge einer arithmetischen theorie der algebraischen Grössen. J. für die Reine und angewandte Math. 92, 1–122 (1882)

    MathSciNet  MATH  Google Scholar 

  25. Lasserre, J.-B.: Moments, Positive Polynomials and Their Applications. Optimization Series, vol. 1. Imperial College Press, London (2010)

    MATH  Google Scholar 

  26. Lecerf, G.: Computing an equidimensional decomposition of an algebraic variety by means of geometric resolutions. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, ISSAC ’00, pp. 209–216, New York. ACM (2000)

  27. Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge University Press, Cambridge (1916)

    MATH  Google Scholar 

  28. Ottaviani, G., Spaenlehauer, P.-J., Sturmfels, B.: Exact solutions in structured low-rank approximation. SIAM J. Matrix Anal. Appl. 35(4), 1521–1542 (2014)

    Article  MathSciNet  Google Scholar 

  29. Poteaux, A., Schost, É.: On the complexity of computing with zero-dimensional triangular sets. J. Symb. Comput. 50, 110–138 (2013)

    Article  MathSciNet  Google Scholar 

  30. Ranestad, K.: Algebraic degree in semidefinite and polynomial optimization. In: Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 61–75. Springer, Berlin (2012)

    MATH  Google Scholar 

  31. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. Appl. Algebra Eng. Commun. Comput. 9(5), 433–461 (1999)

    Article  MathSciNet  Google Scholar 

  32. Safey El Din, M.: Raglib (Real Algebraic Geometry library), Maple package (2007)

  33. Safey El Din, M., Schost, É.: Polar varieties and computation of one point in each connected component of a smooth real algebraic set. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, ISSAC ’03, pp. 224–231, New York, NY. ACM (2003)

  34. Safey El Din, M., Schost, E.: A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets. J. ACM 63(48), (2017)

  35. Safey El Din, M., Schost, É.: Bit complexity for multi-homogeneous polynomial system solving: application to polynomial minimization. J. Symb. Comput. 87, 176–206 (2018)

    Article  MathSciNet  Google Scholar 

  36. Shafarevich, I.: Basic Algebraic Geometry 1. Springer, Berlin (1977)

    Google Scholar 

  37. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press, California (1951)

    MATH  Google Scholar 

Download references

Acknowledgements

The second author is supported by the FMJH Program PGMO and would like to thank LAAS-CNRS and the Mathematics Department of Technische Universität Dortmund where he was working when a significant part of this work was designed. The third author is supported by Institut Universitaire de France. We thank the reviewers for their help in improving the first version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Naldi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henrion, D., Naldi, S. & Din, M.S.E. Real root finding for low rank linear matrices. AAECC 31, 101–133 (2020). https://doi.org/10.1007/s00200-019-00396-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-019-00396-w

Keywords

Mathematics Subject Classification