Abstract
This paper introduces a shuffled frog-leaping algorithm based method to approximate the equivalent circuit parameters of induction machines from the manufacturer data, such as nameplate data and motor performance characteristics. The steady-state equivalent circuit is applied for the simulations. The circuit parameters are found as the result for the error minimization function between the estimated and maker data. The suggested algorithm solves the parameter estimation problem and surpasses the solutions reached by differential evolution, particle swarm optimization and genetic algorithms. Therefore, this algorithm can be employed in motor energy management system for bettering the overall energy savings in industry.
Similar content being viewed by others
Abbreviations
- \(c_{1}\) and \(c_{2}\) :
-
Positive constant numbers
- DE :
-
Differential evolution
- \(D_\mathrm{max}\) :
-
Maximum allowed change in a frog’s position
- \(D_\mathrm{min}\) :
-
Minimum allowed change in a frog’s position
- \(\mathbf{d}_k^{t}\) :
-
Change vector of the \(k\) memeplex in iteration \(t\)
- \(f\) :
-
Frequency
- \(F\) :
-
Objective function
- \(g\) :
-
Number of generation for each memeplex before shuffling
- GAs :
-
Genetic algorithms
- \(I_{1}\) :
-
Stator current per phase
- \(I_{2}\) :
-
Rotor current per phase
- \(I_{fl}\) :
-
Full load current
- \(I_\mathrm{st}\) :
-
Starting current
- \(m\) :
-
Number of memeplexes
- MSFLA :
-
Modified shuffled frog-leaping algorithm
- \(n\) :
-
Number of frogs in every memeplex
- \(N\) :
-
Number of variables, which is considered as a frog
- \(p\) :
-
Number of pairs of poles
- \(P\) :
-
Population of frogs
- \(P_{e}\) :
-
Active electric power
- \(P_{n}\) :
-
Motor nominal power
- \(pf_\mathrm{fl}\) :
-
Full load power factor
- PSO :
-
Particle swarm optimization
- \(Q_{e}\) :
-
Reactive electric power
- \(R_{1}\) :
-
Stator resistance
- \(R_{2}\) :
-
Rotor resistance referred to stator side
- \(R_\mathrm{th}\) :
-
Thevenin’s equivalent resistance
- \(\text{ rand}, \text{ rand}_{1}\) :
-
Random number between 0 and 1
- \(\text{ rand}_{2},\text{ rand}_{3}\) :
-
Random numbers between 0 and 1
- \(\bar{{S}}\) :
-
Complex power
- SFLA :
-
Shuffled frog-leaping algorithm
- \(s_\mathrm{fl}\) :
-
Full load slip
- \(s_\mathrm{m}\) :
-
Slip at which the maximum torque is obtained
- \(T\) :
-
Torque
- \(T_\mathrm{fl}\) :
-
Full load torque
- \(T_\mathrm{max}\) :
-
Maximum torque
- \(T_\mathrm{st}\) :
-
Starting torque
- \(t\) :
-
Time or iteration
- \(t_\mathrm{max}\) :
-
Number of shuffling iterations
- \(V\) :
-
Nominal voltage
- \(V_\mathrm{ph}\) :
-
Stator voltage per phase
- \(V_\mathrm{th}\) :
-
Thevenin’s equivalent voltage
- \(X_{1}\) :
-
Stator leakage reactance
- \(X_{2}\) :
-
Rotor reactance referred to stator side.
- \(X_{m}\) :
-
Magnetizing reactance
- \(X_\mathrm{th}\) :
-
Thevenin’s equivalent reactance
- \(\mathbf{x}_{i}\) :
-
Position of the particle or frog \(i\)
- \(\mathbf{x}_{\mathrm{best},k}^t \) :
-
Frog with the best fitness of the memeplex \(k\) in iteration \(t\)
- \(\mathbf{x}_{\mathrm{worst},k}^t \) :
-
Frog with the worst fitness of the memeplex \(k \)in iteration \(t\)
- \(\mathbf{x}_\mathrm{gbest}^t \) :
-
Frog with the global best fitness in iteration \(t\)
- \(Z_\mathrm{th}\) :
-
Thevenin’s equivalent impedance
- \(\eta _{fl}\) :
-
Full load efficiency
- \(\omega _{s}\) :
-
Motor angular velocity
- cal:
-
Calculated value
- mf:
-
Manufacturer value
- fl:
-
Full load value
References
Krause PC, Wasynczuk O, Sudhoff SD (2002) Analysis of Electric Machinery and Drive Systems, 2nd edn. Wiley/IEEE Press, New York
Koubaa Y (2006) Application of least-squares techniques for induction motor parameters estimation. Math Comput Model Dyn Syst 12(4):363–375
Maragliano G, Marchesoni M (2008) Implementation of a mixed recursive least- squares and Kalman filter approach in parameters, flux, and speed estimation for vector-controlled induction motor drives. Electr Power Compon Syst 36(4):359–386
Haque AH (2008) Determination of NEMA design induction motor parameters from manufacturer data. IEEE Trans Energy Convers 23(4):997–1004
Benbouzid MEH (2003) The H-G diagram model for induction motors analysis: theoretical approach and applications. Electr Power Compon Syst 31(3):211–239
Pedra J, Corcoles F (2004) Estimation of induction motor double-cage model parameters from manufacturer data. IEEE Trans Energy Convers 19(2):310–317
Lindenmeyer D, Dommel HW, Moshref A, Kundur P (2001) An induction motor parameter estimation method. Electr Power Energy Syst 23:251–262
Alonge F, Dippolito F, Ferrante G, Raimondi FM (1998) Parameter identification of induction motor model using genetic algorithms. IEE Proc Control Theory Appl 145(6):587–593
Huang KS, Kent W, Wu QH, Turner DR (2001) Parameter identification for induction motors using genetic algorithm with improved mathematical model. Electr Power Compon Syst 29(3):247–258
Rahimpour E, Rashtchi V, Pesaran M (2007) Parameter identification of deep-bar induction motors using genetic algorithm. Electr Eng 89:547–552
Ursem RK, Vadstrup P (2003) Parameter identification of induction motors using differential evolution. In: 2003 Congress on evolutionary computation (CEC 03), vol 2, pp 790–796
Awadallah MA (2008) Parameter estimation of induction machines from nameplate data using particle swarm optimization and genetic algorithm techniques. Electr Power Compon Syst 36(8):801–814
Sakthivel VP, Bhuvaneswari R, Subramanian S (2010) Multi-objective parameter estimation of induction motor using particle swarm optimization. Eng Appl Artif Intell 23(3):302–312
Sakthivel VP, Bhuvaneswari R, Subramanian S (2010) Bacterial foraging technique based parameter estimation of induction motor from manufacturer data. Electr Power Compon Syst 38(6):657–674
Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154
Lopez PR, Gonzalez MG, Reyes NR, Jurado F (2008) Optimization of biomass fuelled systems for distributed power generation using particle swarm optimization. Electr Power Syst Res 78(8):1448–1455
Gómez M, Jurado F, Díaz P, Ruiz-Reyes N (2010) Evaluation of a particle swarm optimization based method for optimal location of photovoltaic grid-connected systems. Electr Power Compon Syst 38(10):1123–1138
Gómez-González M, Jurado F (2011) A binary shuffled frog-leaping algorithm for the optimal placement and sizing of photovoltaics grid-connected systems. Int Rev Electr Eng 6(1):452–458
Ruiz-Rodriguez FJ, Gomez-Gonzalez M, Jurado F (2011) Binary particle swarm optimization for optimization of photovoltaic generators in radial distribution systems using probabilistic load flow. Electr Power Compon Syst 39(15):1667–1684
Gomez-Gonzalez M, López A, Jurado F (2012) Optimization of distributed generation systems using a new discrete PSO and OPF. Electr Power Syst Res 84(1):174–180
Niknam T, Narimani MR, Azizipanah R (2012) A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect. Energy Convers Manage 58:197–206
Niknam T, Narimani MR, Jabbari M, Malekpour AR (2011) A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy 36(11):6420–6432
Malekpour R, Tabatabaei S, Niknam T (2011) Probabilistic approach to multi-objective volt/var control of distribution system considering hybrid fuel cell and wind energy sources using improved shuffled frog leaping algorithm. Renew Energy 39(1):228–240
Niknam T, Bahmani Firouzi B, Doagou Mojarrad H (2011) A new evolutionary algorithm for non-linear economic dispatch. Expert Syst Appl 38(10):13301–13309
Niknam T, Azad Farsani E, Nayeripour M, Bahmani Firouzi B (2011) A new tribe modified shuffled frog leaping algorithm for multi-objective distribution feeder reconfiguration considering distributed generator units. Eur Trans Electr Power 22(3):308–333
Niknam T, Azad Farsani E (2011) An efficient multi-objective modified shuffled frog leaping algorithm for distribution feeder reconfiguration problem. Eur Trans Electr Power 21(1):721–739
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Perez, I., Gomez-Gonzalez, M. & Jurado, F. Estimation of induction motor parameters using shuffled frog-leaping algorithm. Electr Eng 95, 267–275 (2013). https://doi.org/10.1007/s00202-012-0261-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00202-012-0261-7