Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Estimation of induction motor parameters using shuffled frog-leaping algorithm

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper introduces a shuffled frog-leaping algorithm based method to approximate the equivalent circuit parameters of induction machines from the manufacturer data, such as nameplate data and motor performance characteristics. The steady-state equivalent circuit is applied for the simulations. The circuit parameters are found as the result for the error minimization function between the estimated and maker data. The suggested algorithm solves the parameter estimation problem and surpasses the solutions reached by differential evolution, particle swarm optimization and genetic algorithms. Therefore, this algorithm can be employed in motor energy management system for bettering the overall energy savings in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(c_{1}\) and \(c_{2}\) :

Positive constant numbers

DE :

Differential evolution

\(D_\mathrm{max}\) :

Maximum allowed change in a frog’s position

\(D_\mathrm{min}\) :

Minimum allowed change in a frog’s position

\(\mathbf{d}_k^{t}\) :

Change vector of the \(k\) memeplex in iteration \(t\)

\(f\) :

Frequency

\(F\) :

Objective function

\(g\) :

Number of generation for each memeplex before shuffling

GAs :

Genetic algorithms

\(I_{1}\) :

Stator current per phase

\(I_{2}\) :

Rotor current per phase

\(I_{fl}\) :

Full load current

\(I_\mathrm{st}\) :

Starting current

\(m\) :

Number of memeplexes

MSFLA :

Modified shuffled frog-leaping algorithm

\(n\) :

Number of frogs in every memeplex

\(N\) :

Number of variables, which is considered as a frog

\(p\) :

Number of pairs of poles

\(P\) :

Population of frogs

\(P_{e}\) :

Active electric power

\(P_{n}\) :

Motor nominal power

\(pf_\mathrm{fl}\) :

Full load power factor

PSO :

Particle swarm optimization

\(Q_{e}\) :

Reactive electric power

\(R_{1}\) :

Stator resistance

\(R_{2}\) :

Rotor resistance referred to stator side

\(R_\mathrm{th}\) :

Thevenin’s equivalent resistance

\(\text{ rand}, \text{ rand}_{1}\) :

Random number between 0 and 1

\(\text{ rand}_{2},\text{ rand}_{3}\) :

Random numbers between 0 and 1

\(\bar{{S}}\) :

Complex power

SFLA :

Shuffled frog-leaping algorithm

\(s_\mathrm{fl}\) :

Full load slip

\(s_\mathrm{m}\) :

Slip at which the maximum torque is obtained

\(T\) :

Torque

\(T_\mathrm{fl}\) :

Full load torque

\(T_\mathrm{max}\) :

Maximum torque

\(T_\mathrm{st}\) :

Starting torque

\(t\) :

Time or iteration

\(t_\mathrm{max}\) :

Number of shuffling iterations

\(V\) :

Nominal voltage

\(V_\mathrm{ph}\) :

Stator voltage per phase

\(V_\mathrm{th}\) :

Thevenin’s equivalent voltage

\(X_{1}\) :

Stator leakage reactance

\(X_{2}\) :

Rotor reactance referred to stator side.

\(X_{m}\) :

Magnetizing reactance

\(X_\mathrm{th}\) :

Thevenin’s equivalent reactance

\(\mathbf{x}_{i}\) :

Position of the particle or frog \(i\)

\(\mathbf{x}_{\mathrm{best},k}^t \) :

Frog with the best fitness of the memeplex \(k\) in iteration \(t\)

\(\mathbf{x}_{\mathrm{worst},k}^t \) :

Frog with the worst fitness of the memeplex \(k \)in iteration \(t\)

\(\mathbf{x}_\mathrm{gbest}^t \) :

Frog with the global best fitness in iteration \(t\)

\(Z_\mathrm{th}\) :

Thevenin’s equivalent impedance

\(\eta _{fl}\) :

Full load efficiency

\(\omega _{s}\) :

Motor angular velocity

cal:

Calculated value

mf:

Manufacturer value

fl:

Full load value

References

  1. Krause PC, Wasynczuk O, Sudhoff SD (2002) Analysis of Electric Machinery and Drive Systems, 2nd edn. Wiley/IEEE Press, New York

    Book  Google Scholar 

  2. Koubaa Y (2006) Application of least-squares techniques for induction motor parameters estimation. Math Comput Model Dyn Syst 12(4):363–375

    Article  MATH  Google Scholar 

  3. Maragliano G, Marchesoni M (2008) Implementation of a mixed recursive least- squares and Kalman filter approach in parameters, flux, and speed estimation for vector-controlled induction motor drives. Electr Power Compon Syst 36(4):359–386

    Article  Google Scholar 

  4. Haque AH (2008) Determination of NEMA design induction motor parameters from manufacturer data. IEEE Trans Energy Convers 23(4):997–1004

    Article  MathSciNet  Google Scholar 

  5. Benbouzid MEH (2003) The H-G diagram model for induction motors analysis: theoretical approach and applications. Electr Power Compon Syst 31(3):211–239

    Article  Google Scholar 

  6. Pedra J, Corcoles F (2004) Estimation of induction motor double-cage model parameters from manufacturer data. IEEE Trans Energy Convers 19(2):310–317

    Article  Google Scholar 

  7. Lindenmeyer D, Dommel HW, Moshref A, Kundur P (2001) An induction motor parameter estimation method. Electr Power Energy Syst 23:251–262

    Article  Google Scholar 

  8. Alonge F, Dippolito F, Ferrante G, Raimondi FM (1998) Parameter identification of induction motor model using genetic algorithms. IEE Proc Control Theory Appl 145(6):587–593

    Article  Google Scholar 

  9. Huang KS, Kent W, Wu QH, Turner DR (2001) Parameter identification for induction motors using genetic algorithm with improved mathematical model. Electr Power Compon Syst 29(3):247–258

    Article  Google Scholar 

  10. Rahimpour E, Rashtchi V, Pesaran M (2007) Parameter identification of deep-bar induction motors using genetic algorithm. Electr Eng 89:547–552

    Article  Google Scholar 

  11. Ursem RK, Vadstrup P (2003) Parameter identification of induction motors using differential evolution. In: 2003 Congress on evolutionary computation (CEC 03), vol 2, pp 790–796

  12. Awadallah MA (2008) Parameter estimation of induction machines from nameplate data using particle swarm optimization and genetic algorithm techniques. Electr Power Compon Syst 36(8):801–814

    Article  Google Scholar 

  13. Sakthivel VP, Bhuvaneswari R, Subramanian S (2010) Multi-objective parameter estimation of induction motor using particle swarm optimization. Eng Appl Artif Intell 23(3):302–312

    Article  Google Scholar 

  14. Sakthivel VP, Bhuvaneswari R, Subramanian S (2010) Bacterial foraging technique based parameter estimation of induction motor from manufacturer data. Electr Power Compon Syst 38(6):657–674

    Article  Google Scholar 

  15. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154

    Article  MathSciNet  Google Scholar 

  16. Lopez PR, Gonzalez MG, Reyes NR, Jurado F (2008) Optimization of biomass fuelled systems for distributed power generation using particle swarm optimization. Electr Power Syst Res 78(8):1448–1455

    Article  Google Scholar 

  17. Gómez M, Jurado F, Díaz P, Ruiz-Reyes N (2010) Evaluation of a particle swarm optimization based method for optimal location of photovoltaic grid-connected systems. Electr Power Compon Syst 38(10):1123–1138

    Article  Google Scholar 

  18. Gómez-González M, Jurado F (2011) A binary shuffled frog-leaping algorithm for the optimal placement and sizing of photovoltaics grid-connected systems. Int Rev Electr Eng 6(1):452–458

    Google Scholar 

  19. Ruiz-Rodriguez FJ, Gomez-Gonzalez M, Jurado F (2011) Binary particle swarm optimization for optimization of photovoltaic generators in radial distribution systems using probabilistic load flow. Electr Power Compon Syst 39(15):1667–1684

    Article  Google Scholar 

  20. Gomez-Gonzalez M, López A, Jurado F (2012) Optimization of distributed generation systems using a new discrete PSO and OPF. Electr Power Syst Res 84(1):174–180

    Article  Google Scholar 

  21. Niknam T, Narimani MR, Azizipanah R (2012) A new hybrid algorithm for optimal power flow considering prohibited zones and valve point effect. Energy Convers Manage 58:197–206

    Article  Google Scholar 

  22. Niknam T, Narimani MR, Jabbari M, Malekpour AR (2011) A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy 36(11):6420–6432

    Article  Google Scholar 

  23. Malekpour R, Tabatabaei S, Niknam T (2011) Probabilistic approach to multi-objective volt/var control of distribution system considering hybrid fuel cell and wind energy sources using improved shuffled frog leaping algorithm. Renew Energy 39(1):228–240

    Article  Google Scholar 

  24. Niknam T, Bahmani Firouzi B, Doagou Mojarrad H (2011) A new evolutionary algorithm for non-linear economic dispatch. Expert Syst Appl 38(10):13301–13309

    Article  Google Scholar 

  25. Niknam T, Azad Farsani E, Nayeripour M, Bahmani Firouzi B (2011) A new tribe modified shuffled frog leaping algorithm for multi-objective distribution feeder reconfiguration considering distributed generator units. Eur Trans Electr Power 22(3):308–333

    Google Scholar 

  26. Niknam T, Azad Farsani E (2011) An efficient multi-objective modified shuffled frog leaping algorithm for distribution feeder reconfiguration problem. Eur Trans Electr Power 21(1):721–739

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Jurado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, I., Gomez-Gonzalez, M. & Jurado, F. Estimation of induction motor parameters using shuffled frog-leaping algorithm. Electr Eng 95, 267–275 (2013). https://doi.org/10.1007/s00202-012-0261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-012-0261-7

Keywords