Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the properties of matrices defining some classes of BVMs

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

It is known that the matrices defining the discrete problem generated by a k-step Boundary Value Method (BVM) have a quasi-Toeplitz band structure [7]. In particular, when the boundary conditions are skipped, they become Toeplitz matrices. In this paper, by introducing a characterization of positive definiteness for such matrices, we shall prove that the Toeplitz matrices which arise when using the methods in the classes of BVMs known as Generalized BDF and Top Order Methods have such property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aceto, L.: The Pascal Matrix and Some Numerical Methods for ODEs, Report 01/01, Dipartimento di Energetica, Università degli Studi di Firenze.

  2. Aceto, L., Trigiante, D.: On the A-stable Methods in the GBDF Class. Journal of Nonlinear Analysis: Real World Applications 3, 9–23 (2002)

    Article  Google Scholar 

  3. Allgower, E.L.: Criteria for Positive Definiteness of Some Band Matrices. Numer. Math. 16, 157–162 (1970)

    MATH  Google Scholar 

  4. Amodio, P.: A-stable k-step Linear Multistep Formulae of Order 2k for the Solution of Stiff ODEs. Report 24/96, Dipartimento di Matematica, Università degli Studi di Bari.

  5. Bini, D., Capovani, M.: Spectral and Computational Properties of Band Symmetric Toeplitz Matrices. Linear Alg. Appl. 52–53, 99–126 (1983)

  6. Brugnano, L., Trigiante, D.: Convergence and Stability of Boundary Value Methods for Ordinary Differential Equations. J. Comput. Appl. Math. 66, 97–109 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brugnano, L., Trigiante, D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon and Breach Science Publishers, Amsterdam, 1998

  8. Dahlquist, G.: Positive functions and some applications to stability questions for numerical methods. Recent advances in numerical analysis. Proc. Symp., Madison/Wis. 1–29 (1978)

  9. Di Lena, G., Iavernaro, F., Mazzia, F.: On the unique solvability of the systems arising from boundary value methods. Nonlinear Stud. 4, 1–12 (1997)

    MATH  Google Scholar 

  10. Grenander, U., Szegö, G.: Toeplitz Forms and their Applications. Second Edition, Chelsea, New York, 1984

  11. Henrici, P.: Applied and Computational Complex Analysis. John Wiley & Sons, New York, 1974

  12. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, 1985

  13. Iavernaro, F., Mazzia, F.: Convergence and Stability of Multistep Methods Solving Nonlinear Initial Value Problems. SIAM J. Sci. Comput. 18, 270–285 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Mazzia, A., Mazzia, F.: High-Order Transverse Schemes for the Numerical Solution of PDEs. J. Comput. Appl. Math. 82, 299–311 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stanley, R.: Hilbert Functions of Graded Algebras. Adv. Math. 28, 57–83 (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Aceto.

Additional information

Mathematics Subject Classification (2000): 65L06, 47B35, 15A48

Work supported by G.N.C.S.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aceto, L., Trigiante, D. On the properties of matrices defining some classes of BVMs. Numer. Math. 96, 1–16 (2003). https://doi.org/10.1007/s00211-003-0464-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-003-0464-y

Keywords