Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A QR–method for computing the singular values via semiseparable matrices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

The standard procedure to compute the singular value decomposition of a dense matrix, first reduces it into a bidiagonal one by means of orthogonal transformations. Once the bidiagonal matrix has been computed, the QR–method is applied to reduce the latter matrix into a diagonal one. In this paper we propose a new method for computing the singular value decomposition of a real matrix. In a first phase, an algorithm for reducing the matrix A into an upper triangular semiseparable matrix by means of orthogonal transformations is described. A remarkable feature of this phase is that, depending on the distribution of the singular values, after few steps of the reduction, the largest singular values are already computed with a precision depending on the gaps between the singular values. An implicit QR–method for upper triangular semiseparable matrices is derived and applied to the latter matrix for computing its singular values. The numerical tests show that the proposed method can compete with the standard method (using an intermediate bidiagonal matrix) for computing the singular values of a matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bevilacqua, R., Del Corso, G.M.: Existence, uniqueness and algorithms for matrix unitary reduction to semiseparable form. Tech. Report TR-03-12, University of Pisa, July 2003

  2. Bini, D.A., Gemignani, L., Pan, V.: QR-like algorithms for generalized semiseparable matrices. Tech. Report 1470, Department of Mathematics, University of Pisa, 2004

  3. Chan, T.F., Hansen, P.C.: Some applications of the rank revealing QR factorization. SIAM J. Sci. Stat. Comp. 13, 727–741 (1992)

    MATH  Google Scholar 

  4. Chandrasekaran, S., Ipsen, I.: On rank-revealing factorizations. SIAM J. Matrix Anal. Appl. 15, 592–622 (1994)

    MATH  Google Scholar 

  5. Demmel, J.W., Kahan, W.: Accurate singular values of bidiagonal matrices. SIAM J. Sci. Comp. 11(5), 873–912 (1990)

    MATH  Google Scholar 

  6. Elsner, L.: Some observations on inverses of band matrices and low rank perturbations of triangular matrices. Acta Technica Academiae Scientiarum Hungaricae. 108(1–2), 41–48 (1997–1999)

    Google Scholar 

  7. Gantmacher, F.R., Krein, M.G.: Oscillation matrices and kernels and small vibrations of mechanical systems. AMS Chelsea Publishing, Providence, Rhode Island, revised edition, 2002

  8. Gohberg, I., Kailath, T., Koltracht, I.: Linear complexity algorithms for semiseparable matrices. Integral Equations and Operator Theory. 8(6), 780–804 (1985)

    MATH  Google Scholar 

  9. Golub, G.H., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 2, 205–224 (1965)

    MATH  Google Scholar 

  10. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins university Press, third edition, 1996

  11. Joliffe, I.T.: Principal component analysis. Springer verlag, 1986

  12. Koltracht, I.: Linear complexity algorithm for semiseparable matrices. Integral Equations and Operator Theory. 29(3), 313–319 (1997)

    MATH  Google Scholar 

  13. Minchev, B.V.: Some algorithms for solving special tridiagonal block toeplitz linear systems. J. Comput. Appl. Math. 156, 179–200 (2003)

    MATH  Google Scholar 

  14. Stewart, G.W.: Matrix Algorithms, Vol II Eigensystems. SIAM, 1999

  15. Stewart, G.W.: The QLP approximation to the singular value decomposition. SIAM J. Sci. Stat. Comput. 20(4), 1336–1348 (1999)

    Article  MATH  Google Scholar 

  16. Strang, G., Nguyen, T.: The interplay of ranks of submatrices. Submitted to SIAM Review, http://www-math.mit.edu/ gs/papers/papers.html, February 2004

  17. Trefethen, L.N., Bau, D.: Numer. Linear Algebra. SIAM, 1997

  18. Van Barel, M., Vandebril, R., Mastronardi, N.: The Lanczos-Ritz values appearing in an orthogonal similarity reduction of a matrix into semiseparable form. Report TW 360, Department of Computer Science, K.U.Leuven, Leuven, Belgium, May 2003

  19. Van Camp, E., Mastronardi, N., Van Barel, M.: Two fast algorithms for solving diagonal-plus-semiseparable linear systems. J. Comput. Appl. Math. 164–165, 731–747 (2004)

    Google Scholar 

  20. Vandebril, R., Van Barel, M., Mastronardi, N.: An implicit QR algorithm for semiseparable matrices to compute the eigendecomposition of symmetric matrices. Report TW 367, Department of Computer Science, K.U.Leuven, Leuven, Belgium, August 2003

  21. Vandebril, R., Van Barel, N., end Mastronardi, M.: A note on the representation and definition of semiseparable matrices. Numerical Linear Algebra with Applications. May 2004. Accepted for publication (Report TW393)

  22. Wall, M.E., Dyck, P.A., Brettin, T.S.: Svdman - singular value decomposition analysis of microarray data. Bioinformatics. 17(6), 566–568 (2001)

    Article  Google Scholar 

  23. Wall, M.E., Rechtsteiner, A., Rocha, L.M.: Singular value decomposition and principal component analysis. A practical approach to microarray data analysis. 2003. D.P. Berrar, W. Dubitzky, M. Granzow, eds, kluwer pp. 1–20

  24. Watkins, D.S.: QR like algorithms an overview of convergence theory and practice. Lectures Appl. Math. 32, 879–893 (1996)

    MATH  Google Scholar 

  25. Watkins, D.S., Elsner, L.: Convergence of algorithms of decomposition type for the eigenvalue problem. Linear Algebra and Its Applications. 143, 19–47 (1991)

    Article  MATH  Google Scholar 

  26. Watkins, D.S., Elsner, L.: Chasing algorithms for the eigenvalue problem. SIAM J. Matrix Anal. Appl. 12(2), 374–384 (1991)

    MATH  Google Scholar 

  27. Watkins, D.S., Elsner, L.: Theory of decomposition and bulge-chasing algorithms for the generalized eigenvalue problem. SIAM J. Matrix Anal. Appl. 15(3), 943–967 (1994)

    MATH  Google Scholar 

  28. Yeung, M.K.S., Ruzzo, W.L.: Principal component analysis for clustering gene expression data. Bioinformatics. 17(9), 763–774 (2001)

    Article  Google Scholar 

  29. Yeung, M.K.S., Tegner, J., Collins, J.J.: Reverse engineering gene networks using singular value decomposition and robust regression. In Proceedings of the national academy of sciences of the united states of america. 99, 6163–6168 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Van Barel.

Additional information

Mathematics Subject Classification (2000): 65F15, 15A18

The research of the first two authors was partially supported by the Research Council K.U.Leuven, project OT/00/16 (SLAP: Structured Linear Algebra Package), by the Fund for Scientific Research–Flanders (Belgium), projects G.0078.01 (SMA: Structured Matrices and their Applications), G.0176.02 (ANCILA: Asymptotic aNalysis of the Convergence behavior of Iterative methods in numerical Linear Algebra), G.0184.02 (CORFU: Constructive study of Orthogonal Functions) and G.0455.0 (RHPH: Riemann-Hilbert problems, random matrices and Padé-Hermite approximation), and by the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister’s Office for Science, Technology and Culture, project IUAP V-22 (Dynamical Systems and Control: Computation, Identification & Modelling). The work of the third author was partially supported by MIUR, grant number 2002014121. The scientific responsibility rests with the authors.

Acknowledgments.We thank the referees for their suggestions which increased the readability of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandebril, R., Barel, M. & Mastronardi, N. A QR–method for computing the singular values via semiseparable matrices. Numer. Math. 99, 163–195 (2004). https://doi.org/10.1007/s00211-004-0550-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0550-9

Keywords