Abstract
We prove a posteriori error estimates for time discretizations by the discontinuous Galerkin method dG(q) and the corresponding implicit Runge- Kutta-Radau method IRK-R(q) of arbitrary order q≥0 for both linear and nonlinear evolution problems of the form \(u^{\prime} + \mathfrak{F}(u) = f\), with γ2-angle bounded operator \(\mathfrak{F}\). The key ingredient is a novel higher order reconstruction \(\widehat{U}\) of the discrete solution U, which restores continuity and leads to the differential equation \(\widehat{U}^{\prime}+\Pi\mathfrak{F}(U)=F\) for a suitable interpolation operator Π and piecewise polynomial approximation F of f. We discuss applications to linear PDE, such as the convection-diffusion equation (γ ≥ 1/2) and the wave equation (formally γ = ∞), and nonlinear PDE corresponding to subgradient operators (γ = 1), such as the p-Laplacian, as well as Lipschitz operators (γ ≥ 1/2). We also derive conditional a posteriori error estimates for the time-dependent minimal surface problem.
Similar content being viewed by others
References
Akrivis G., Makridakis Ch.G., Nochetto R.H. (2006). A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comp. 75:511–531
Baker G.A., Bramble J.H. (1979). Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13(2):75–100
Bangerth W., Rannacher R. (2003). Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel
Bergam A., Bernardi C., Mghazli Z. (2005). A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74(251):1117–1138 (electronic)
Brézis H. (1972). Problèmes unilatéraux. J. Math. Pures Appl. 51:1–168
Brézis H., Browder F.E. (1975). Nonlinear integral equations and systems of Hammerstein type. Adv. Math. 18(2):115–147
Caffarelli L.A. (1997). The regularity of monotone maps of finite compression. Comm. Pure Appl. Math. 50(6):563–591
Chen Z., Feng J. (2004). An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems. Math. Comp. 73(247):1167–1193 (electronic)
Dekker K., Verwer J.G. (1984). Stability of Runge-Kutta methods for stiff nonlinear differential equations. North-Holland Publishing Co., Amsterdam
Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numer. pp 105–158 (1995)
Eriksson K., Johnson C. (1991). Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal., 28(1):43–77
Eriksson K., Johnson C. (1995). Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32(6):1729–1749
Eriksson K. Johnson C., Larsson S. (1998). Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35(4):1315–1325 (electronic)
Eriksson K., Johnson C., Logg A. (2004). Adaptive computational methods for parabolic problems. In: Stein E., de Borst R., Houghes T.J.R. (eds) Encyclopedia of Computational Mechanics. Wiley, New York, pp. 1–44
Eriksson K., Johnson C., Thomée V. (1985). Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO Modél. Math. Anal. Numér. 19(4):611–643
Estep D.J. (1995). A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal. 32(1):1–48
Estep, D.J., Larson, M.G., Williams, R.D.: Estimating the error of numerical solutions of systems of reaction-diffusion equations. Mem. Amer. Math. Soc. 146(696) viii+109 (2000)
Estep D.J., Stuart A.M. (2002). The dynamical behavior of the discontinuous Galerkin method and related difference schemes. Math. Comp. 71(239):1075–1103 (electronic)
Fierro F., Veeser A. (2003). On the a posteriori error analysis for equations of prescribed mean curvature. Math. Comp. 72:1611–1634
Hairer E., Wanner G. (1991). Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer, Berlin Heidelberg New York
Houston, P., Senior, B., Süli, E.: hp-discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity. Internat. J. Numer. Methods Fluids, 40(1–2) 153–169 (2002) ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001)
Houston P., Süli E. (2001). hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM J. Sci. Comput. 23(4):1226–1252 (electronic)
Jamet P. (1978). Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15(5):912–928
Johnson C. (1988). Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 25(4):908–926
Johnson C. (1993). Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 107(1–2):117–129
Johnson C., Nie Y.Y., Thomée V. (1990). An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27(2):277–291
Karakashian O., Makridakis Ch. (1998). A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67(222):479–499
Lakkis, O., Nochetto, R.H.: A posteriori error analysis for the mean curvature flow of graphs. SIAM J. Numer. Anal. (2004)
Lasaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation, in mathematical aspects of finite elements in partial differential equations. In: Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Academic Press, pp. 89–123. Publication No. 33 (1974)
Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod (1969)
Lippold G. (1990). Error estimates for the implicit Euler approximation of an evolution inequality. Nonlinear Anal. 15(11):1077–1089
Lippold G. (1991). Error estimates and step-size control for the approximate solution of a first order evolution equation. RAIRO Modél. Math. Anal. Numér. 25(1):111–128
Nochetto, R.H., Savaré, G.: Nonlinear evolution equations governed by accretive operators in banach spaces: error control and applications. Math. Models Methods Appl. Sci. (to appear)
Nochetto R.H., Savaré G., Verdi C. (1998). Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris, Ser. I 326:1437–1442
Nochetto R.H., Savaré G., Verdi C. (2000). A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53(5):525–589
Nochetto R.H., Schmidt A., Verdi C. (2000). A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69(229):1–24
Picasso M. (1998). Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Eng. 167(3–4):223–237
Rulla J. (1996). Error analysis for implicit approximations to solutions to cauchy problems. SIAM J. Numer. Anal. 33(1):68–87
Skeel R.D. (1986). Thirteen ways to estimate global error. Numer. Math. 48(1):1–20
Stuart A.M., Humphries A.R. (1995). The essential stability of local error control for dynamical systems. SIAM J. Numer. Anal. 32(6):1940–1971
Süli, E., Houston, P.: Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity. In: The state of the art in numerical analysis (York, 1996), vol. 63 of Inst. Math. Appl. Conf. Ser. New Ser., pp. 441–471. Oxford University Press, New York (1997)
Thomée V. (1997). Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin Heidelberg New York
Verfürth R. (1998). A posteriori error estimates for nonlinear problems. L r(0,T; L ρ(Ω))-error estimates for finite element discretizations of parabolic equations. Math. Comp. 67(224):1335–1360
Verfürth R. (2003). A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40:195–212
Zadunaisky, P.E.: On the estimation of errors propagated in the numerical integration of ordinary differential equations. Numer. Math. 27(1) 21–39 (1976/1977).
Author information
Authors and Affiliations
Corresponding author
Additional information
Partially supported by the European Union RTN-network HYKE, HPRN-CT-2002-00282, and the EU Marie Curie Development Host Site, HPMD-CT-2001-00121.
Partially supported by NSF Grants DMS-9971450 and DMS-0204670 and the General Research Board of the University of Maryland.
Rights and permissions
About this article
Cite this article
Makridakis, C., Nochetto, R.H. A posteriori error analysis for higher order dissipative methods for evolution problems. Numer. Math. 104, 489–514 (2006). https://doi.org/10.1007/s00211-006-0013-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-006-0013-6
Keywords
- A posteriori error analysis
- Discontinuous Galerkin
- Runge-Kutta-Radau
- Reconstruction
- γ2-angle bounded operator
- Energy method