Abstract
Even though the two term recurrence relation satisfied by the incomplete gamma function is asymptotically stable in at least one direction, for an imaginary second argument there can be a considerable loss of correct digits before stability sets in. We present an approach to compute the recurrence relation to full precision, also for small values of the arguments, when the first argument is negative and the second one is purely imaginary. A detailed analysis shows that this approach works well for all values considered.
Similar content being viewed by others
References
Abramowitz M., Stegun I.A. (1964) Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, vol. 55 of Applied Mathematics Series. National Bureau of Standards, Washington
Berry M.V. (1989) Uniform asymptotic smoothing of Stokes’ discontinuities. Proc. R. Soc. Lond. A 422, 7–21
Chirikjian G.S. (1996) Fredholm integral equations on the Euclidean motion group. Inverse Probl. 12, 579–599
Conway J.T. (2000) Analytical solutions for the newtonian gravitational field induced by matter within axisymmetric boundaries. Mon. Not. R. Astron. Soc. 316, 540–554
Davis A.M.J. (1992) Drag modifications for a sphere in a rotational motion at small non-zero Reynolds and Taylor numbers: wake interference and possible coriolis effects. J. Fluid Mech. 237, 13–22
Davis S. (2001) Scalar field theory and the definition of momentum in curved space. Class. Quant. Grav. 18, 3395–3425
Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. (1953) Higher Transcendental Functions, volume II of California Institute of Technology, Bateman Manuscript Project. McGraw-Hill Book Company, Inc., New York
Gaspard R., Alonso Ramirez D. (1992) Ruelle classical resonances and dynamical chaos: the three- and four-disk scatterers. Phys. Rev. A 45(12): 8383–8397
Gautschi, W.: The computation of special functions by linear difference equations. In: Elaydi, S., Győri, I., Ladas, G. (eds.) Proceedings of the Second International Conference on Difference Equations, pp. 213–243. Gordon and Breach Science Publishers, New York (1995)
Groote S., Körner J.G., Pivovarov A.A. (1999) On the evaluation of sunset-type Feynman diagrams. Nucl. Phys. B 542, 515–547
Holmes M.J., Kashyap R., Wyatt R. (1999) Physical properties of optical fiber sidetap grating filters: free space model. IEEE J. Sel. Topics in Quant. Electron. 5(5): 1353–1365
Lotter T., Benien C., Vary P. (2003) Multichannel direction-independent speech enhancement using spectral amplitude estimation. EURASIP J. Appl. Signal Process. 11, 1147–1156
Miller, G.F.: Tables of generalized exponential integrals, vol. 3 of Mathematical Tables. National Physics Laboratory, Her Majesty’s Stationary Office, London (1960)
Olver F.W.J. (1991) Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral. SIAM J. Math. Anal. 22, 1460–1474
Olver, F.W.J.: The generalized exponential integral. In: Zahar, R.V.M. (eds.) Approximation and Computation: A Festschrift in Honor of Walter Gautschi, vol. 119 of Internat. Ser. Num. Math. pp. 497–510. Birkhaüser (1994)
Paris R.B. (1994) An asymptotic representation for the Riemann zeta function on the critical line. Proc. R. Soc. Lond. A 446, 565–587
Roesset J.M. (1998) Nondestructive dynamic testing of soils and pavements. Tamkang J. Sci. Eng. 1(2): 61–81
Stone H.A. McConnell H.M. (1995) Hydrodynamics of quantized shape transitions of lipid domains. R. Soc. Lond. Proc. Ser. A 448, 97–111
Tanzosh J., Stone H.A. (1994) Motion of a rigid particle in a rotating viscous flow: an integral equation approach. J. Fluid Mech. 275, 225–256
Temme N.M. (1975) Uniform asymptotic expansions of the incomplete gamma functions and the incomplete beta function. Math. Comp. 29(132): 1109–1114
Temme N.M. (1979) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10(4): 757–766
Temme N.M. (1996) Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters. Methods Appl. Anal. 3(3): 335–344
Van Deun J., Cools R. (2005) Integrating products of Bessel functions using the incomplete Gamma function. In: Simos T.E., Psihoyios G., Tsitouras Ch. (eds) International Conference on Numerical Analysis and Applied Mathematics 2005. Wiley–VCH, New York, pp. 668–671
Van Deun, J., Cools, R.: Algorithm 8XX: Computing infinite range integrals of an arbitrary product of Bessel functions. ACM Trans. Math. Softw. (To appear)
Van Deun J., Cools R. A Matlab implementation of an algorithm for computing integrals of products of Bessel functions. In: Takayama N., Iglesias A., Gutierrez J., (eds) Proceedings of ICMS 2006, vol. 4151 of Lecture Notes in Computer Science, pp. 289–300
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Van Deun, J., Cools, R. A stable recurrence for the incomplete gamma function with imaginary second argument. Numer. Math. 104, 445–456 (2006). https://doi.org/10.1007/s00211-006-0026-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-006-0026-1