Abstract
We study dislocation dynamics with a level set point of view. The model we present here looks at the zero level set of the solution of a non local Hamilton Jacobi equation, as a dislocation in a plane of a crystal. The front has a normal speed, depending on the solution itself. We prove existence and uniqueness for short time in the set of continuous viscosity solutions. We also present a first order finite difference scheme for the corresponding level set formulation of the model. The scheme is based on monotone numerical Hamiltonian, proposed by Osher and Sethian. The non local character of the problem makes it not monotone. We obtain an explicit convergence rate of the approximate solution to the viscosity solution. We finally provide numerical simulations.
Similar content being viewed by others
References
Alvarez O., Cardaliaguet P., Monneau R. (2005) Existence and uniqueness for dislocation dynamics with nonnegative velocity. Interface and Boundary 7(4): 415–434
Alvarez O., Carlini E., Monneau R., Rouy E. (2006) Convergence of a first order scheme for a non local eikonal equation. IMACS J. Appl. Numer. Math. 56, 1136–1146
Alvarez O., Hoch P., Le Bouar Y., Monneau R. (2004) Existence et unicité en temps court d’une solution de viscosité discontinue d’une équation de Hamilton-Jacobi non locale décrivant la dynamique d’une dislocation. Note C.R. Acad. Sci. Paris, Ser. I 338, 679–684
Alvarez O., Hoch P., Le Bouar Y., Monneau R. (2006) Dislocation dynamics driven by the self-force: short time existence and uniqueness of the solution. Arch. Rational Mech. Anal. 181(3): 449–504
Barles G. (1994) Solutions de Viscosité des Equations de Hamilton-Jacobi. Springer, Berlin Heidelberg New York
Crandall G., Lions P.L. (1984) Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp. 167, 1–19
Crandall M.G., Lions P.-L. (1986) On existence and uniqueness of solutions of Hamilton-Jacobi equations. Nonlin. Anal. 10, 353–370
Crandall G., Evans L.C., Lions P.L. (1984) Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 282, 487–502
Hirsh J.P., Lothe J. (1992) Theory of Dislocations, 2nd Edn. Krieger, Malabar, FL
Osher S., Sethian J.A. (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi. J. Comput. Phys. 79, 12–49
Rouy E., Tourin A. (1992) A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3): 867–84
Sabac F. (1997) The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34(6): 2306–2318
Xiang Y., Cheng L.T.,Srolovitz D.J., Asserman W.E. (2003) A level set method for dislocation dynamics. Acta Mater. 51(18): 5499–5518
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been supported by funds from ACI JC 1041 “Mouvements d’interfaces avec termes non-locaux”, from ACI-JC 1025 “Dynamique des dislocations” and from ONERA, Office National d’Etudes et de Recherches. The second author was also supported by the ENPC-Région Ile de France.
Rights and permissions
About this article
Cite this article
Alvarez, O., Carlini, E., Monneau, R. et al. A convergent scheme for a non local Hamilton Jacobi equation modelling dislocation dynamics. Numer. Math. 104, 413–444 (2006). https://doi.org/10.1007/s00211-006-0030-5
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-006-0030-5