Abstract
In this paper we are concerned with the analysis of convergent sequential and parallel overlapping domain decomposition methods for the minimization of functionals formed by a discrepancy term with respect to the data and a total variation constraint. To our knowledge, this is the first successful attempt of addressing such a strategy for the nonlinear, nonadditive, and nonsmooth problem of total variation minimization. We provide several numerical experiments, showing the successful application of the algorithm for the restoration of 1D signals and 2D images in interpolation/inpainting problems, respectively, and in a compressed sensing problem, for recovering piecewise constant medical-type images from partial Fourier ensembles.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, xviii. Clarendon Press, Oxford (2000)
Aubert G., Kornprobst P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variation. Springer, Berlin (2002)
Bauschke, H.H., Borwein, J.M., Lewis, A.S.: The method of cyclic projections for closed convex sets in Hilbert space. Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), pp 1–38, Contemp. Math., 204, Amer. Math. Soc., Providence (1997)
Braides A.: Γ-Convergence for Beginners, No.22 in Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2002)
Bruck R.E., Reich S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3(4), 459–470 (1977)
Candès E.J.: Compressive sampling. Int. Congress of Mathematics 3, 1433–1452 (2006)
Candès E.J., Romberg J., Tao T.: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
Candès E.J., Tao T.: Near optimal signal recovery from random projections: universal encoding strategies?. IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)
Carstensen C.: Domain decomposition for a non-smooth convex minimalization problems and its application to plasticity. Numer. Linear Algebra Appl. 4(3), 177–190 (1998)
Chambolle A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)
Chambolle A., Darbon J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84(3), 288–307 (2009)
Chambolle A., Lions P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)
Chan T.F., Golub G.H., Mulet P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)
Chan T.F., Mathew T.P.: Domain decomposition algorithms. Acta Numer. 3, 61–143 (1994)
Combettes P.L., Wajs V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)
Darbon J., Sigelle M.: A fast and exact algorithm for total variation minimization. IbPRIA 2005 3522(1), 351–359 (2005)
Daubechies I., Defrise M., De Mol C.: An iterative thresholding algorithm for linear inverse problems. Comm. Pure Appl. Math. 57(11), 1413–1457 (2004)
Daubechies I., DeVore R.A., Fornasier M., Güntürk C.S.: Iteratively re-weighted least squares minimization for sparse recovery. Comm. Pure Appl. Math. 63(1), 1–38 (2010)
Daubechies I., Teschke G., Vese L.: Iteratively solving linear inverse problems under general convex constraints. Inverse Probl. Imaging 1(1), 29–46 (2007)
Dobson D., Vogel C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34(5), 1779–1791 (1997)
Donoho D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
Ekeland, I., Temam, R.: Convex analysis and variational problems. Translated by Minerva Translations, Ltd., London., Studies in Mathematics and its Applications, vol. 1. North-Holland Publishing Company/American Elsevier Publishing Company, Inc., Oxford/New York (1976)
Engl H.W., Hanke M., Neubauer A.: Regularization of inverse problems. Mathematics and its Applications (Dordrecht), vol. 375. Kluwer, Dordrecht (1996)
Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. CRC Press, (1992)
Fornasier M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Problems 23(6), 2505–2526 (2007)
Fornasier M., Schönlieb C.-B.: Subspace correction methods for total variation and ℓ1−minimization. SIAM J. Numer. Anal. 47(5), 3397–3428 (2009)
Goldstein T., Osher S.: The split Bregman method for L 1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)
Hiriart-Urruty J.-B.H., Lemaréchal C.: Convex Analysis and Minimization Algorithms I, vol. 305 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1996)
Lustig M., Donoho D., Pauly J.M.: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)
Müller, J.: Parallel Methods for Nonlinear Imaging Techniques, Master thesis, University of Münster, (2008)
Nesterov Y.: Smooth minimization of non-smooth functions. Math. Program. Ser. A 103, 127–152 (2005)
Osher S., Burger M., Goldfarb D., Xu J., Yin W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)
Rudin L.I., Osher S., Fatemi E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)
Schönlieb, C.-B.: Total variation minimization with an H −1 constraint, CRM Series 9, Singularities in Nonlinear Evolution Phenomena and Applications proceedings, Scuola Normale Superiore Pisa 2009, 201–232
Tai X.-C., Tseng P.: Convergence rate analysis of an asynchronous space decomposition method for convex minimization. Math. Comp. 71(239), 1105–1135 (2004)
Tai X.-C., Xu J.: Global convergence of subspace correction methods for convex optimization problems. Math. Comp. 71(237), 105–124 (2002)
Vese L.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optim. 44, 131–161 (2001)
Warga J.: Minimizing certain convex functions. J. Soc. Indust. Appl. Math. 11, 588–593 (1963)
Weiss P., Blanc-Féraud L., Aubert G.: Efficient schemes for total variation minimization under constraints in image processing. SIAM J. Sci. Comput. 31(3), 2047–2080 (2009)
Xu, J., Tai, X.-C., Wang, L.-L.: A Two-level domain decomposition method for image restoration, UCLA Computational and Applied Mathematics Report 09-92, November 2009
Matlab code and numerical experiments of the methods provided in this paper can be downloaded at the web-page: http://homepage.univie.ac.at/carola.schoenlieb/webpage_tvdode/tv_dode_numerics.htm
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Fornasier, M., Langer, A. & Schönlieb, CB. A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116, 645–685 (2010). https://doi.org/10.1007/s00211-010-0314-7
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-010-0314-7