Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Transforming algebraic Riccati equations into unilateral quadratic matrix equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The problem of reducing an algebraic Riccati equation XCXAXXD + B = 0 to a unilateral quadratic matrix equation (UQME) of the kind PX 2 + QX + R = 0 is analyzed. New transformations are introduced which enable one to prove some theoretical and computational properties. In particular we show that the structure preserving doubling algorithm (SDA) of Anderson (Int J Control 28(2):295–306, 1978) is in fact the cyclic reduction algorithm of Hockney (J Assoc Comput Mach 12:95–113, 1965) and Buzbee et al. (SIAM J Numer Anal 7:627–656, 1970), applied to a suitable UQME. A new algorithm obtained by complementing our transformations with the shrink-and-shift technique of Ramaswami is presented. The new algorithm is accurate and much faster than SDA when applied to some examples concerning fluid queue models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson B.D.O.: Second-order convergent algorithms for the steady-state Riccati equation. Int. J. Control 28(2), 295–306 (1978)

    Article  MATH  Google Scholar 

  2. Bean N.G., O’Reilly M.M., Taylor P.G.: Algorithms for return probabilities for stochastic fluid flows. Stoch. Models 21(1), 149–184 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bini D., Meini B.: On the solution of a nonlinear matrix equation arising in queueing problems. SIAM J. Matrix Anal. Appl. 17(4), 906–926 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bini D., Meini B.: The cyclic reduction algorithm: from Poisson equation to stochastic processes and beyond. Numer. Algorithm 51(1), 23–60 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bini D., Meini B., Ramaswami V.: A probabilistic interpretation of cyclic reduction and its relationships with logarithmic reduction. Calcolo 45, 207–216 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bini, D.A., Gemignani, L., Meini, B.: Computations with infinite Toeplitz matrices and polynomials. Linear Algebra Appl. 343/344, 21–61. (2002) (Special issue on structured and infinite systems of linear equations)

  7. Bini D.A., Iannazzo B., Latouche G., Meini B.: On the solution of algebraic Riccati equations arising in fluid queues. Linear Algebra Appl. 413(2-3), 474–494 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bini, D.A., Iannazzo, B., Meini, B., Poloni, F.: Nonsymmetric algebraic Riccati equations associated with an M-matrix: recent advances and algorithms. In: Olshevsky, V., Tyrtyshnikov, E. (eds) Matrix Methods: Theory, Algorithms and Applications, pp. 176–209, World Scientific Publishing, April 2010

  9. Bini D.A., Latouche G., Meini B.: Numerical Methods for Structured Markov Chains. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford Science Publications, New York (2005)

    Book  Google Scholar 

  10. Buzbee B.L., Golub G.H., Nielson C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chiang C.-Y., Chu E.K.-W., Guo C.-H., Huang T.-M., Lin W.-W., Xu S.-F.: Convergence analysis of the doubling algorithm for several nonlinear matrix equations in the critical case. SIAM J. Matrix Anal. Appl. 31(2), 227–247 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golub G.H., Van Loan C.F.: Matrix computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  13. Guo C.-H.: Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices. SIAM J. Matrix Anal. Appl. 23(1), 225–242 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guo C.-H.: Efficient methods for solving a nonsymmetric algebraic Riccati equation arising in stochastic fluid models. J. Comput. Appl. Math. 192(2), 353–373 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guo C.-H.: A new class of nonsymmetric algebraic Riccati equations. Linear Algebra Appl. 426(2–3), 636–649 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guo C.-H., Higham N.J.: Iterative solution of a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29(2), 396–412 (2007)

    Article  MathSciNet  Google Scholar 

  17. Guo C.-H., Iannazzo B., Meini B.: On the doubling algorithm for a (shifted) nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29(4), 1083–1100 (2007)

    Article  MathSciNet  Google Scholar 

  18. Guo C.-H., Laub A.J.: On the iterative solution of a class of nonsymmetric algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 22(2), 376–391 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guo X.-X., Lin W.-W., Xu S.-F.: A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. Numer. Math. 103(3), 393–412 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hockney R.W.: A fast direct solution of Poisson’s equation using Fourier analysis. J. Assoc. Comput. Mach. 12, 95–113 (1965)

    MATH  MathSciNet  Google Scholar 

  21. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994) (Corrected reprint of the 1991 original)

  22. Iannazzo, B., Bini, D.: A Cyclic Reduction Method for Solving Algebraic Riccati Equations. Technical report. Dipartimento di Matematica, Università di Pisa (2003)

  23. Juang J., Lin W.-W.: Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices. SIAM J. Matrix Anal. Appl. 20(1), 228–243 (1999)

    Article  MathSciNet  Google Scholar 

  24. Lancaster P., Rodman L.: Existence and uniqueness theorems for the algebraic Riccati equation. Int. J. Control 32(2), 285–309 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lancaster P., Rodman L.: Algebraic Riccati equations. Oxford Science Publications/The Clarendon Press Oxford University Press, New York (1995)

    MATH  Google Scholar 

  26. Latouche G., Ramaswami V.: A logarithmic reduction algorithm for quasi-birth-death processes. J. Appl. Probab. 30(3), 650–674 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lin W.-W., Xu S.-F.: Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations. SIAM J. Matrix Anal. Appl. 28(1), 26–39 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mehrmann V.L.: The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution, vol. 163 of Lecture Notes in Control and Information Sciences. Springer, Berlin (1991)

    Google Scholar 

  29. Ramaswami, V.: Matrix analytic methods for stochastic fluid flows. In: Proceedings of the 16th International Teletraffic Congress, pp. 19–30. Elsevier Science, Edinburg (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario A. Bini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, D.A., Meini, B. & Poloni, F. Transforming algebraic Riccati equations into unilateral quadratic matrix equations. Numer. Math. 116, 553–578 (2010). https://doi.org/10.1007/s00211-010-0319-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0319-2

Mathematics Subject Classification (2000)