Abstract
The problem of reducing an algebraic Riccati equation XCX − AX − XD + B = 0 to a unilateral quadratic matrix equation (UQME) of the kind PX 2 + QX + R = 0 is analyzed. New transformations are introduced which enable one to prove some theoretical and computational properties. In particular we show that the structure preserving doubling algorithm (SDA) of Anderson (Int J Control 28(2):295–306, 1978) is in fact the cyclic reduction algorithm of Hockney (J Assoc Comput Mach 12:95–113, 1965) and Buzbee et al. (SIAM J Numer Anal 7:627–656, 1970), applied to a suitable UQME. A new algorithm obtained by complementing our transformations with the shrink-and-shift technique of Ramaswami is presented. The new algorithm is accurate and much faster than SDA when applied to some examples concerning fluid queue models.
Similar content being viewed by others
References
Anderson B.D.O.: Second-order convergent algorithms for the steady-state Riccati equation. Int. J. Control 28(2), 295–306 (1978)
Bean N.G., O’Reilly M.M., Taylor P.G.: Algorithms for return probabilities for stochastic fluid flows. Stoch. Models 21(1), 149–184 (2005)
Bini D., Meini B.: On the solution of a nonlinear matrix equation arising in queueing problems. SIAM J. Matrix Anal. Appl. 17(4), 906–926 (1996)
Bini D., Meini B.: The cyclic reduction algorithm: from Poisson equation to stochastic processes and beyond. Numer. Algorithm 51(1), 23–60 (2009)
Bini D., Meini B., Ramaswami V.: A probabilistic interpretation of cyclic reduction and its relationships with logarithmic reduction. Calcolo 45, 207–216 (2008)
Bini, D.A., Gemignani, L., Meini, B.: Computations with infinite Toeplitz matrices and polynomials. Linear Algebra Appl. 343/344, 21–61. (2002) (Special issue on structured and infinite systems of linear equations)
Bini D.A., Iannazzo B., Latouche G., Meini B.: On the solution of algebraic Riccati equations arising in fluid queues. Linear Algebra Appl. 413(2-3), 474–494 (2006)
Bini, D.A., Iannazzo, B., Meini, B., Poloni, F.: Nonsymmetric algebraic Riccati equations associated with an M-matrix: recent advances and algorithms. In: Olshevsky, V., Tyrtyshnikov, E. (eds) Matrix Methods: Theory, Algorithms and Applications, pp. 176–209, World Scientific Publishing, April 2010
Bini D.A., Latouche G., Meini B.: Numerical Methods for Structured Markov Chains. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford Science Publications, New York (2005)
Buzbee B.L., Golub G.H., Nielson C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)
Chiang C.-Y., Chu E.K.-W., Guo C.-H., Huang T.-M., Lin W.-W., Xu S.-F.: Convergence analysis of the doubling algorithm for several nonlinear matrix equations in the critical case. SIAM J. Matrix Anal. Appl. 31(2), 227–247 (2009)
Golub G.H., Van Loan C.F.: Matrix computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Guo C.-H.: Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices. SIAM J. Matrix Anal. Appl. 23(1), 225–242 (2001)
Guo C.-H.: Efficient methods for solving a nonsymmetric algebraic Riccati equation arising in stochastic fluid models. J. Comput. Appl. Math. 192(2), 353–373 (2006)
Guo C.-H.: A new class of nonsymmetric algebraic Riccati equations. Linear Algebra Appl. 426(2–3), 636–649 (2007)
Guo C.-H., Higham N.J.: Iterative solution of a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29(2), 396–412 (2007)
Guo C.-H., Iannazzo B., Meini B.: On the doubling algorithm for a (shifted) nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29(4), 1083–1100 (2007)
Guo C.-H., Laub A.J.: On the iterative solution of a class of nonsymmetric algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 22(2), 376–391 (2000)
Guo X.-X., Lin W.-W., Xu S.-F.: A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. Numer. Math. 103(3), 393–412 (2006)
Hockney R.W.: A fast direct solution of Poisson’s equation using Fourier analysis. J. Assoc. Comput. Mach. 12, 95–113 (1965)
Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994) (Corrected reprint of the 1991 original)
Iannazzo, B., Bini, D.: A Cyclic Reduction Method for Solving Algebraic Riccati Equations. Technical report. Dipartimento di Matematica, Università di Pisa (2003)
Juang J., Lin W.-W.: Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices. SIAM J. Matrix Anal. Appl. 20(1), 228–243 (1999)
Lancaster P., Rodman L.: Existence and uniqueness theorems for the algebraic Riccati equation. Int. J. Control 32(2), 285–309 (1980)
Lancaster P., Rodman L.: Algebraic Riccati equations. Oxford Science Publications/The Clarendon Press Oxford University Press, New York (1995)
Latouche G., Ramaswami V.: A logarithmic reduction algorithm for quasi-birth-death processes. J. Appl. Probab. 30(3), 650–674 (1993)
Lin W.-W., Xu S.-F.: Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations. SIAM J. Matrix Anal. Appl. 28(1), 26–39 (2006)
Mehrmann V.L.: The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution, vol. 163 of Lecture Notes in Control and Information Sciences. Springer, Berlin (1991)
Ramaswami, V.: Matrix analytic methods for stochastic fluid flows. In: Proceedings of the 16th International Teletraffic Congress, pp. 19–30. Elsevier Science, Edinburg (1999)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bini, D.A., Meini, B. & Poloni, F. Transforming algebraic Riccati equations into unilateral quadratic matrix equations. Numer. Math. 116, 553–578 (2010). https://doi.org/10.1007/s00211-010-0319-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-010-0319-2