Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Second-order schemes for conservation laws with discontinuous flux modelling clarifier–thickener units

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Continuously operated clarifier–thickener (CT) units can be modeled by a non-linear, scalar conservation law with a flux that involves two parameters that depend discontinuously on the space variable. This paper presents two numerical schemes for the solution of this equation that have formal second-order accuracy in both the time and space variable. One of the schemes is based on standard total variation diminishing (TVD) methods, and is addressed as a simple TVD (STVD) scheme, while the other scheme, the so-called flux-TVD (FTVD) scheme, is based on the property that due to the presence of the discontinuous parameters, the flux of the solution (rather than the solution itself) has the TVD property. The FTVD property is enforced by a new nonlocal limiter algorithm. We prove that the FTVD scheme converges to a BV t solution of the conservation law with discontinuous flux. Numerical examples for both resulting schemes are presented. They produce comparable numerical errors, while the FTVD scheme is supported by convergence analysis. The accuracy of both schemes is superior to that of the monotone first-order scheme based on the adaptation of the Engquist–Osher scheme to the discontinuous flux setting of the CT model (Bürger, Karlsen and Towers in SIAM J Appl Math 65:882–940, 2005). In the CT application there is interest in modelling sediment compressibility by an additional strongly degenerate diffusion term. Second-order schemes for this extended equation are obtained by combining either the STVD or the FTVD scheme with a Crank–Nicolson discretization of the degenerate diffusion term in a Strang-type operator splitting procedure. Numerical examples illustrate the resulting schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barton N.G., Li C.-H., Spencer S.J.: Control of a surface of discontinuity in continuous thickeners. J. Austral. Math. Soc. Ser. B 33, 269–289 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bouchut F.: Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004)

    Google Scholar 

  3. Bürger R., García A., Karlsen K.H., Towers J.D.: A family of numerical schemes for kinematic flows with discontinuous flux. J. Eng. Math. 60, 387–425 (2008)

    Article  MATH  Google Scholar 

  4. Bürger R., Karlsen K.H., Klingenberg C., Risebro N.H.: A front tracking approach to a model of continuous sedimentation in ideal clarifier–thickener units. Nonlin. Anal. Real World Appl. 4, 457–481 (2003)

    Article  MATH  Google Scholar 

  5. Bürger R., Karlsen K.H., Risebro N.H.: A relaxation scheme for continuous sedimentation in ideal clarifier–thickener units. Comput. Math. Appl. 50, 993–1009 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bürger R., Karlsen K.H., Risebro N.H., Towers J.D.: Monotone difference approximations for the simulation of clarifier–thickener units. Comput. Visual. Sci. 6, 83–91 (2004)

    MATH  Google Scholar 

  7. Bürger R., Karlsen K.H., Risebro N.H., Towers J.D.: Well-posedness in BV t and convergence of a difference scheme for continuous sedimentation in ideal clarifier–thickener units. Numer. Math. 97, 25–65 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bürger R., Karlsen K.H., Towers J.D.: A mathematical model of continuous sedimentation of flocculated suspensions in clarifier–thickener units. SIAM J. Appl. Math. 65, 882–940 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bürger R., Karlsen K.H., Towers J.D.: An Engquist-Osher type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47, 1684–1712 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chancelier J.P., Cohen de Lara M., Pacard F.: Analysis of a conservation PDE with discontinuous flux: a model of settler. SIAM J. Appl. Math. 54, 954–995 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Diehl S.: Dynamic and steady-state behaviour of continuous sedimentation. SIAM J. Appl. Math. 57, 991–1018 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Diehl S.: Operating charts for continuous sedimentation II: step responses. J. Eng. Math. 53, 139–185 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Diehl S.: A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 6, 127–159 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Engquist B., Osher S.: One-sided difference approximations for nonlinear conservation laws. Math. Comp. 36, 321–351 (1981)

    MATH  MathSciNet  Google Scholar 

  15. Godlewski E., Raviart P.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (1996)

    MATH  Google Scholar 

  16. Gottlieb S., Shu C., Tadmor E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Harten A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kynch G.J.: A theory of sedimentation. Trans. Farad. Soc. 48, 166–176 (1952)

    Article  Google Scholar 

  19. Lev O., Rubin E., Sheintuch M.: Steady state analysis of a continuous clarifier–thickener system. AIChE J. 32, 1516–1525 (1986)

    Article  Google Scholar 

  20. LeVeque R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)

    MATH  Google Scholar 

  21. Osher S., Chakravarthy S.: High resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21, 955–984 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Strang G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sweby P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Temple B.: Global solution of the Cauchy problem for a class of 2 × 2 nonstrictly hyperbolic conservation laws. Adv. Appl. Math. 3, 335–375 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  25. Towers J.D.: A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39, 1197–1218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimund Bürger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürger, R., Karlsen, K.H., Torres, H. et al. Second-order schemes for conservation laws with discontinuous flux modelling clarifier–thickener units. Numer. Math. 116, 579–617 (2010). https://doi.org/10.1007/s00211-010-0325-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0325-4

Mathematics Subject Classification (2000)