Abstract
Polynomial spline spaces defined on mixed meshes consisting of triangles and rectangles are studied for the C 0 case. These include triangulations with hanging vertices as well as T-meshes. In addition to dimension formulae, explicit basis functions are constructed, and their supports and stability are discussed. The approximation power of the spaces is also treated.
Similar content being viewed by others
References
Ainsworth M., Oden J.T.: A posteriori error estimation in finite element analysis. Wiley-Interscience, New York (2000)
Brix K., Pinto M.C., Dahmen W.: A multilevel preconditioner for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 46, 2742–2768 (2008)
Carstensen C., Hu J.: Hanging nodes in the unifying theory of a posteriori finite element error control. J. Comp. Math. 27, 215–236 (2009)
Deng J.-S., Chen F-L., Feng Y.-Y.: Dimensions of spline spaces over T-meshes. J. Comput. Appl. Math. 194, 267–283 (2006)
Deng J.-S., Chen F-L., Li X., Hu C., Tong W., Yang Z., Feng Y.: Polynomial splines over heirachical T-meshes. Graphical Mod. 74, 76–86 (2008)
Dörfel M. R., Jüttler B., Simeon B.: Adaptive isogeometric analysis by local h-refinements with T-splines. Comp. Meth. Appl. Mech. Eng. 199, 264–275 (2010)
Forsey D., Bartels R.: Hierarchical B-spline refinement. Comput. Graph. 22(4), 205–212 (1988)
Goël J.J.: Construction of basic functions for numerical utilization of Ritz’s method. Numer. Math. 12, 435–447 (1968)
Ibrahim A.Kh.: Dimension of superspline spaces defined over rectilinear partitions. In: Chui, C., Schumaker, L., Ward, J. (eds) Approximation Theory VI, pp. 337–340. Academic Press, New York (1989)
Lai M.J., Schumaker L.L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007)
Li C.J., Wang R.H., Zhang F.: Improvement on the dimensions of splines on T-meshes. J. Inf. Comput. Sci. 3, 235–244 (2006)
Prautzsch H., Boehm W., Paluszny M.: Bézier and B-spline Techniques. Springer, Berlin (2002)
Schumaker L.L.: Computing bivariate splines in scattered data fitting and the finite element method. Numer. Algorithms 48, 237–260 (2008)
Šolın P., Červený J., Doležel I.: Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM. Math. Comput. Simul. 77, 117–132 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schumaker, L.L., Wang, L. Spline spaces on TR-meshes with hanging vertices. Numer. Math. 118, 531–548 (2011). https://doi.org/10.1007/s00211-010-0353-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-010-0353-0