Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we propose a palindromic quadratization approach, transforming a palindromic matrix polynomial of even degree to a palindromic quadratic pencil. Based on the \({(\mathcal{S}+ \mathcal{S}^{-1})}\) -transform and Patel’s algorithm, the structure-preserving algorithm can then be applied to solve the corresponding palindromic quadratic eigenvalue problem. Numerical experiments show that the relative residuals for eigenpairs of palindromic polynomial eigenvalue problems computed by palindromic quadratized eigenvalue problems are better than those via palindromic linearized eigenvalue problems or \({{\texttt {polyeig}}}\) in MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betcke T.: Optimal scaling of generalized and polynomial eigenvalue problems. SIAM J. Matrix Anal. Appl. 30, 1320–1338 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Byers, R., Mackey, D.S., Mehrmann, V., Xu, H.: Symplectic, BVD, and palindromic approaches to discrete-time control problems. Technical report, Preprint 14-2008, Institute of Mathematics, Technische Universität Berlin (2008)

  3. Chen T.-Y., Demmel J.W.: Balancing sparse matrices for computing eigenvalues. Linear Algebra Appl. 309, 261–287 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiang, C.-Y., Chu, E.K.-W., Li, T., Lin, W.-W.: The palindromic generalized eigenvalue problem A * x =  λ A x: numerical solution and applications. Linear Algebra Appl. (2010, to appear)

  5. Chu, E.K.-W., Huang, T.-M., Lin, W.-W.: Structured doubling algorithms for solving g-palindromic quadratic eigenvalue problems. Technical report, NCTS Preprints in Mathematics 2008-4-003, National Tsing Hua University, Hsinchu, Taiwan (2008)

  6. Chu E.K.-W., Hwang T.-M., Lin W.-W., Wu C.-T.: Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms. J. Comput. Appl. Math. 219, 237–252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan H.-Y., Lin W.-W., Van Dooren P.: Normwise scaling of second order polynomial matrices. SIAM J. Matrix Anal. Appl. 26, 252–256 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grammont, L., Higham, N.J., Tisseur, F.: A framework for analyzing nonlinear eigenproblems and parametrized linear systems. Technical report, The MIMS Secretary, School of Mathematics, the University of Manchester. MIMS EPrint: 2009.51 (2009)

  9. Higham N.J., Tisseur F., Van Dooren P.M.: Detecting a definite hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems. Linear Algebra Appl. 351–352, 455–474 (2002)

    Article  MathSciNet  Google Scholar 

  10. Highman N.J., Li R.-C., Tisseur F.: Backward error of polynomial eigenproblems solved by linearization. SIAM J. Matrix Anal. Appl. 29, 1218–1241 (2007)

    MathSciNet  Google Scholar 

  11. Hilliges, A.: Numerische Lösung von quadratischen eigenwertproblemen mit Anwendungen in der Schiendynamik. Master’s thesis, Technical University Berlin, Germany, July 2004

  12. Hilliges, A., Mehl, C., Mehrmann, V.: On the solution of palindramic eigenvalue problems. In: Proceedings 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS). Jyväskylä, Finland (2004)

  13. Huang T.-M., Lin W.-W., Qian J.: Structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration on fast trains. SIAM J. Matrix Anal. Appl. 30, 1566–1592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, T.-M., Lin, W.-W., Su, W.-S.: Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree. Technical report, NCTS Preprints in Mathematics, National Tsing Hua University, Hsinchu, Taiwan, 2009-6-002 (2009)

  15. Ipsen, C.F.: Accurate eigenvalues for fast trains. SIAM News, 37 (2004)

  16. Lemonnier D., Van Dooren P.: Balancing regular matrix pencils. SIAM J. Matrix Anal. Appl. 28, 253–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, R.-L., Lin, W.-W., Wang, C.-S.: Structured backward error for palindromic polynomial eigenvalue problems. Technical report, NCTS Preprints in Mathematics, National Tsing Hua University, Hsinchu, Taiwan, 2008-7-002 (2008)

  18. Lin W.-W.: A new method for computing the closed-loop eigenvalues of a discrete-time algebraic Riccatic equation. Linear Algebra Appl. 96, 157–180 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mackey D.S., Mackey N., Mehl C., Mehrmann V.: Numerical methods for palindromic eigenvalue problems: computing the anti-triangular Schur form. Numer. Linear Algebra Appl. 16, 63–86 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mackey D.S., Mackey N., Mehl C., Mehrmann V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28, 1029–1051 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mackey D.S., Mackey N., Mehl C., Mehrmann V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 971–1004 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Patel R.V.: On computing the eigenvalues of a symplectic pencil. Linear Algebra Appl. 188, 591–611 (1993)

    Article  MathSciNet  Google Scholar 

  23. Schröder, C.: SKURV: a Matlab toolbox for the skew URV decomposition of a matrix triple. http://www.math.tu-berlin.de/~schroed/Software/skurv

  24. Schröder, C.: A QR-like algorithm for the palindromic eigenvalue problem. Technical report, Preprint 388, TU Berlin, Matheon, Germany (2007)

  25. Schröder, C.: URV decomposition based structured methods for palindromic and even eigenvalue problems. Technical report, Preprint 375, TU Berlin, MATHEON, Germany (2007)

  26. Tisseur F., Meerbergen K.: A survey of the quadratic eigenvalue problem. SIAM Rev. 43, 234–286 (2001)

    Article  MathSciNet  Google Scholar 

  27. Xu H.: On equivalence of pencils from discrete-time and continuous-time control. Linear Algebra Appl. 414, 97–124 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zaglmayr, S.: Eigenvalue problems in saw-filter simulations. Diplomarbeit, Institute of Computational Mathematics, Johannes Kepler University Linz, Linz, Austria (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Wei Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, TM., Lin, WW. & Su, WS. Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree. Numer. Math. 118, 713–735 (2011). https://doi.org/10.1007/s00211-011-0370-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0370-7

Mathematics Subject Classification (2000)