Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Numerical Eulerian method for linearized gas dynamics in the high frequency regime

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study the propagation of an acoustic wave in a moving fluid in the high frequency regime. We calculate the asymptotic approximation of the solution, around a mean flow, of this problem using an Eulerian method. By introducing the stretching matrix (deformation tensor for the geometrical optics rays) of the linearized Euler system, we deduce the geometrical spreading. This quantity is the key tool for computing the leading order term of the asymptotic expansion thanks to a conservation equation along the group velocity. The main contribution is to construct and implement a numerical scheme in the Eulerian framework for the eikonal equation and for the transport equation on the stretching matrix. We present numerical results for several test cases to study the convergence and validate our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. The tangent bundle of \(\mathcal {T}\) is \(T\mathcal {T}\). A fiber over \(\varvec{y}\in \mathcal {T}\) of this bundle is the tangent vector space \(T_{\varvec{y}}\mathcal {T}\) of \(\mathcal {T}\) at \(\varvec{y}\). In the same way, the cotangent bundle \(T^*\mathcal {T}\) (or phase space) consists of fibers over \(\varvec{y}\) each of which is the dual vector space to \(T_{\varvec{y}}\mathcal {T}\).

References

  1. Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Springer, Berlin (1994)

    MATH  Google Scholar 

  2. Benamou, J.D., Lafitte, O., Sentis, R., Solliec, I.: A geometric optics method for high frequency electromagnetic fields computations near fold caustics Part I. J. Comp. Appl. Math. 156, 93–125 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benamou, J.D., Lafitte, O., Sentis, R., Solliec, I.: A geometric optics method for high frequency electromagnetic fields computations near fold caustics Part II. J. Comp. Appl. Math. 167, 91–134 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blokhintzev, D.: The propagation of sound in an inhomogeneous and moving medium. J. Acoust. Soc. Am. 18, 322–328 (1946)

    Article  MathSciNet  Google Scholar 

  5. Bouche, D., Molinet, F.: Méthodes asymptotiques en électromagntisme. In: Mathématiques et Applications, vol. 16. Springer, Berlin (1996)

  6. Bruneau, M.: Manuel d’acoustique fondamentale. Hermes (1998)

  7. Bühler, O.: Waves and Mean Flows. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  8. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Crandall, M.G., Lions, P.L.: Two approximation solutions of Hamilton-Jacobi equations. Math. Comp. 43, 1–19 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duprey, S.: Étude mathématique et numérique de la propagation acoustique dans un turboréacteur, Thèse de mathématique de l’université Henry-Poincaré Nancy1 (2006)

  11. Engquist, B., Fatemi, E., Osher, S.: Numerical resolution of the high frequency asymptotic expansion of the scalar wave equation. J. Comp. Phys. 120, 145–155 (1995)

    Google Scholar 

  12. Engquist, B., Runborg, O.: Computational high frequency wave propagation. Acta Numer. 12, 181–266 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7, 345–392 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  14. Friedrichs, K.O., Lax, P.: Boundary value problems for first order operators. Comm. Pure Appl. Math. 18, 355–388 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  15. Friedlander, F.G.: The Wave Equation on a Curved Space-Time. Cambridge University Press, Cambridge (1975)

    MATH  Google Scholar 

  16. Friedlander, F.G., Keller, J.P.: Asymptotic expansions of solutions of \((\triangle +k^2)u=0\). Comm. Pure. Appl. Math. 8(3), 387–394 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  17. Friedlander, F.G.: Sound Pulses. Cambridge University Press, Cambridge (1958)

    MATH  Google Scholar 

  18. Guès, O.: Développement asymptotique des solutions exactes des systèmes hyperboliques quasilinéaires. Asympt. Anal 6, 241–269 (1993)

    MATH  Google Scholar 

  19. Harten, A., Engquiqst, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non oscilattory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1985)

    Google Scholar 

  21. Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Springer, Berlin (1985)

    Google Scholar 

  22. Joly, J.L., Métivier, G., Rauch, J.: Formal and rigorous nonlinear high frequency hyperbolic waves. Pitman Res. Notes Math. 253, 121–143 (1992)

    Google Scholar 

  23. Joly, J.L., Métivier, G., Rauch, J.: Coherent and focusing multidimensional nonlinear geometric optics. Ann. Sci. Ec. Norm. Sup. 28, 51–113 (1995)

    MATH  Google Scholar 

  24. Keller, J.B., Rubinow, S.I.: Asymptotic solution of eigenvalue problems. Ann. Phys. 9, 24–75 (1960)

    Article  MATH  Google Scholar 

  25. Keller, J.B.: A geometrical theory of diffraction. In: Calculus of Variations and its Applications, vol. 8. McGraw-Hill, New-York (1958)

  26. Lafitte, O., Noumir, Y.: High frequency and numerical Eulerian methods for aeroacoustic problems. J. Comput. Appl. Math. 204(2), 537–548 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Landau, L.D., Lipschitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1987)

    MATH  Google Scholar 

  28. Lax, P.D.: Asymptotic solutions of oscillatory initial value problems. Duke Math J. 24, 627–646 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lax, P.D.: Hyperbolic Partial Differential Equations. In: Courant Lecture Notes, vol. 14. AMS, Providence (2006)

  30. Legendre, G.: Rayonnement acoustique dans un fluide en écoulement: Analyse mathématique et numérique de l’équation de Galbrun, thèse Université Pierre et Marie Curie (2003)

  31. Ludwig, D.: Exact and asymptotic solutions of the Cauchy problem. Comm. Pure Appl. Math. 14, 113–124 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  32. Majda, A., Osher, S.: Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary. Comm. Pure Appl. Math. 28(5), 607–675 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  33. Noumir, Y.: Une analyse haute fréquence des équations de l’aéroacoustique: étude mathématique et simulations numériques, thèse université Paris13 (2010)

  34. Noumir, Y., Lafitte, O., Rauch, J.: Conservation laws and fold caustics in the high frequency regime (2013, to appear)

  35. Osher, S., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal 28(4), 907–922 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  36. Piperno, S., Bernacki, M.: A dissipation-free time-domain Discontinuous Galerkin method applied to three dimensional linearized Euler equations around a steady-state non-uniform inviscid flow. J. Computat. Acoust. 14(4), 445–467 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rauch, J.: Hyperbolic Partial Differential Equations and Geometric Optics. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  38. Rouy, E., Tourin, A.: A viscosity solution approach to shape-from-shading. SIAM J. Numer. Anal. 29, 867–884 (1998)

    Article  MathSciNet  Google Scholar 

  39. Souganidis, P.: Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Differ. Equ. 59, 1–43 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  40. Taylor, M.: Partial differential equations, basic theory. In: Texts in Applied Math., vol. 23. Springer, Berlin (1996)

Download references

Acknowledgments

The authors would like to thank the anonymous referee for her/his careful reading and for the helpful comments that have improved substantially the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Dubois.

Additional information

This work has been supported by EADS-Innovation Works through the funding of the PhD thesis of Y. Noumir.

Appendix: Reduced geometric spreading

Appendix: Reduced geometric spreading

Proposition 2

If the mean flow is independent of the time, and if the solution of the eikonal equation is written as \(\phi (t,\varvec{x})=\phi _1(t)+\phi _2(\varvec{x})\) or \(\phi (t,\varvec{x})={\tilde{\phi }_1}(t)\phi _2(\varvec{x})\) where \(\tilde{\phi }_1\) is a strictly positive function, then the geometrical spreading is reduced to:

$$\begin{aligned} J(s,\varvec{\beta })=-\left| \partial _s\varvec{x}(s,\varvec{\alpha }) ~~\partial _{\varvec{\alpha }}\varvec{x}(s,\varvec{\alpha })\right| , \end{aligned}$$

where \(\varvec{\beta }\equiv (t_0,\varvec{\alpha })\in \mathbb {R}\times \mathbb {R}^{d-1}\) is a parameterization of the incident surface \(\Sigma _{inc}\).

Proof

In these cases, the equation on the ray field is written

$$\begin{aligned} \frac{\partial \varvec{x}}{\partial s}(s,\varvec{\beta })=\varvec{u}_0(\varvec{x}(s,\varvec{\beta }))+c_0(\varvec{x}(s,\varvec{\beta })) \frac{\varvec{\nabla }_{\varvec{x}}\phi _2(\varvec{x}(s,\varvec{\beta }))}{\left| \varvec{\nabla }_{\varvec{x}}\phi _2(\varvec{x}(s,\varvec{\beta }))\right| }, \end{aligned}$$

that can be written also as

$$\begin{aligned} \frac{\partial \varvec{x}}{\partial s}(s,\varvec{\beta })=\varvec{\mathcal {F}}(\varvec{x}(s,\varvec{\beta })). \end{aligned}$$
(35)

By deriving the above equation with respect to \(t_0\), it follows that

$$\begin{aligned} \frac{\partial }{\partial s}\left( \partial _{t_0}\varvec{x}\right) (s,\varvec{\beta })=\nabla _{\varvec{x}} \varvec{\mathcal {F}}\left( \varvec{x}(s,\varvec{\beta })\right) .\partial _{t_0}\varvec{x}(s,\varvec{\beta }). \end{aligned}$$

Given that \(\varvec{x}(0,\varvec{\beta })=(\varvec{\alpha },0)\), it ensues that \(\partial _{t_0}\varvec{x}(0,\varvec{\beta })=\varvec{0}_d\). By uniqueness of the solution of the equation (35), we deduce that \(\partial _{t_0}\varvec{x}(s,\varvec{\beta })=\varvec{0}_d\) for all \(s\).

It remains to note that the geometrical spreading is expressed as the sum of two determinants:

$$\begin{aligned} J(s,\varvec{\beta })=\left| \partial _{t_0}\varvec{x}(s,\varvec{\beta }) ~~ \partial _{\varvec{\alpha }}\varvec{x}(s,\varvec{\beta })\right| -\left| \partial _s \varvec{x}(s,\varvec{\beta }) ~~\partial _{\varvec{\alpha }}\varvec{x} (s,\varvec{\beta })\right| . \end{aligned}$$

This completes the proof of Proposition.\(\square \)

In this case the function \(U\) simplifies to

$$\begin{aligned} U(t,\varvec{x})= \left( \begin{array}{c} \partial _{\alpha }\varvec{x}\left( \mathcal {S}_0(t,\varvec{x}),\mathcal {Y}_0(t,\varvec{x})\right) \\ \partial _{\alpha }\varvec{\xi }\left( \mathcal {S}_0(t,\varvec{x}),\mathcal {Y}_0(t,\varvec{x})\right) \end{array}\right) , \end{aligned}$$

which is solution of the same transport equation (16), but where the second derivatives of the Hamiltonian \(\mathcal {H}^\pm \) are replaced by those of the Hamiltonian \(H^\pm \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noumir, Y., Dubois, F. & Lafitte, O. Numerical Eulerian method for linearized gas dynamics in the high frequency regime. Numer. Math. 127, 641–683 (2014). https://doi.org/10.1007/s00211-013-0598-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0598-5

Mathematics Subject Classification (2000)