Abstract
We study the propagation of an acoustic wave in a moving fluid in the high frequency regime. We calculate the asymptotic approximation of the solution, around a mean flow, of this problem using an Eulerian method. By introducing the stretching matrix (deformation tensor for the geometrical optics rays) of the linearized Euler system, we deduce the geometrical spreading. This quantity is the key tool for computing the leading order term of the asymptotic expansion thanks to a conservation equation along the group velocity. The main contribution is to construct and implement a numerical scheme in the Eulerian framework for the eikonal equation and for the transport equation on the stretching matrix. We present numerical results for several test cases to study the convergence and validate our approach.
Similar content being viewed by others
Notes
The tangent bundle of \(\mathcal {T}\) is \(T\mathcal {T}\). A fiber over \(\varvec{y}\in \mathcal {T}\) of this bundle is the tangent vector space \(T_{\varvec{y}}\mathcal {T}\) of \(\mathcal {T}\) at \(\varvec{y}\). In the same way, the cotangent bundle \(T^*\mathcal {T}\) (or phase space) consists of fibers over \(\varvec{y}\) each of which is the dual vector space to \(T_{\varvec{y}}\mathcal {T}\).
References
Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Springer, Berlin (1994)
Benamou, J.D., Lafitte, O., Sentis, R., Solliec, I.: A geometric optics method for high frequency electromagnetic fields computations near fold caustics Part I. J. Comp. Appl. Math. 156, 93–125 (2003)
Benamou, J.D., Lafitte, O., Sentis, R., Solliec, I.: A geometric optics method for high frequency electromagnetic fields computations near fold caustics Part II. J. Comp. Appl. Math. 167, 91–134 (2004)
Blokhintzev, D.: The propagation of sound in an inhomogeneous and moving medium. J. Acoust. Soc. Am. 18, 322–328 (1946)
Bouche, D., Molinet, F.: Méthodes asymptotiques en électromagntisme. In: Mathématiques et Applications, vol. 16. Springer, Berlin (1996)
Bruneau, M.: Manuel d’acoustique fondamentale. Hermes (1998)
Bühler, O.: Waves and Mean Flows. Cambridge University Press, Cambridge (2009)
Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)
Crandall, M.G., Lions, P.L.: Two approximation solutions of Hamilton-Jacobi equations. Math. Comp. 43, 1–19 (1984)
Duprey, S.: Étude mathématique et numérique de la propagation acoustique dans un turboréacteur, Thèse de mathématique de l’université Henry-Poincaré Nancy1 (2006)
Engquist, B., Fatemi, E., Osher, S.: Numerical resolution of the high frequency asymptotic expansion of the scalar wave equation. J. Comp. Phys. 120, 145–155 (1995)
Engquist, B., Runborg, O.: Computational high frequency wave propagation. Acta Numer. 12, 181–266 (2003)
Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7, 345–392 (1954)
Friedrichs, K.O., Lax, P.: Boundary value problems for first order operators. Comm. Pure Appl. Math. 18, 355–388 (1965)
Friedlander, F.G.: The Wave Equation on a Curved Space-Time. Cambridge University Press, Cambridge (1975)
Friedlander, F.G., Keller, J.P.: Asymptotic expansions of solutions of \((\triangle +k^2)u=0\). Comm. Pure. Appl. Math. 8(3), 387–394 (1955)
Friedlander, F.G.: Sound Pulses. Cambridge University Press, Cambridge (1958)
Guès, O.: Développement asymptotique des solutions exactes des systèmes hyperboliques quasilinéaires. Asympt. Anal 6, 241–269 (1993)
Harten, A., Engquiqst, B., Osher, S., Chakravarthy, S.: Uniformly high order accurate essentially non oscilattory schemes III. J. Comput. Phys. 71, 231–303 (1987)
Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1985)
Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Springer, Berlin (1985)
Joly, J.L., Métivier, G., Rauch, J.: Formal and rigorous nonlinear high frequency hyperbolic waves. Pitman Res. Notes Math. 253, 121–143 (1992)
Joly, J.L., Métivier, G., Rauch, J.: Coherent and focusing multidimensional nonlinear geometric optics. Ann. Sci. Ec. Norm. Sup. 28, 51–113 (1995)
Keller, J.B., Rubinow, S.I.: Asymptotic solution of eigenvalue problems. Ann. Phys. 9, 24–75 (1960)
Keller, J.B.: A geometrical theory of diffraction. In: Calculus of Variations and its Applications, vol. 8. McGraw-Hill, New-York (1958)
Lafitte, O., Noumir, Y.: High frequency and numerical Eulerian methods for aeroacoustic problems. J. Comput. Appl. Math. 204(2), 537–548 (2007)
Landau, L.D., Lipschitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1987)
Lax, P.D.: Asymptotic solutions of oscillatory initial value problems. Duke Math J. 24, 627–646 (1957)
Lax, P.D.: Hyperbolic Partial Differential Equations. In: Courant Lecture Notes, vol. 14. AMS, Providence (2006)
Legendre, G.: Rayonnement acoustique dans un fluide en écoulement: Analyse mathématique et numérique de l’équation de Galbrun, thèse Université Pierre et Marie Curie (2003)
Ludwig, D.: Exact and asymptotic solutions of the Cauchy problem. Comm. Pure Appl. Math. 14, 113–124 (1961)
Majda, A., Osher, S.: Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary. Comm. Pure Appl. Math. 28(5), 607–675 (1975)
Noumir, Y.: Une analyse haute fréquence des équations de l’aéroacoustique: étude mathématique et simulations numériques, thèse université Paris13 (2010)
Noumir, Y., Lafitte, O., Rauch, J.: Conservation laws and fold caustics in the high frequency regime (2013, to appear)
Osher, S., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal 28(4), 907–922 (1991)
Piperno, S., Bernacki, M.: A dissipation-free time-domain Discontinuous Galerkin method applied to three dimensional linearized Euler equations around a steady-state non-uniform inviscid flow. J. Computat. Acoust. 14(4), 445–467 (2006)
Rauch, J.: Hyperbolic Partial Differential Equations and Geometric Optics. American Mathematical Society, Providence (2012)
Rouy, E., Tourin, A.: A viscosity solution approach to shape-from-shading. SIAM J. Numer. Anal. 29, 867–884 (1998)
Souganidis, P.: Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Differ. Equ. 59, 1–43 (1985)
Taylor, M.: Partial differential equations, basic theory. In: Texts in Applied Math., vol. 23. Springer, Berlin (1996)
Acknowledgments
The authors would like to thank the anonymous referee for her/his careful reading and for the helpful comments that have improved substantially the final version of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been supported by EADS-Innovation Works through the funding of the PhD thesis of Y. Noumir.
Appendix: Reduced geometric spreading
Appendix: Reduced geometric spreading
Proposition 2
If the mean flow is independent of the time, and if the solution of the eikonal equation is written as \(\phi (t,\varvec{x})=\phi _1(t)+\phi _2(\varvec{x})\) or \(\phi (t,\varvec{x})={\tilde{\phi }_1}(t)\phi _2(\varvec{x})\) where \(\tilde{\phi }_1\) is a strictly positive function, then the geometrical spreading is reduced to:
where \(\varvec{\beta }\equiv (t_0,\varvec{\alpha })\in \mathbb {R}\times \mathbb {R}^{d-1}\) is a parameterization of the incident surface \(\Sigma _{inc}\).
Proof
In these cases, the equation on the ray field is written
that can be written also as
By deriving the above equation with respect to \(t_0\), it follows that
Given that \(\varvec{x}(0,\varvec{\beta })=(\varvec{\alpha },0)\), it ensues that \(\partial _{t_0}\varvec{x}(0,\varvec{\beta })=\varvec{0}_d\). By uniqueness of the solution of the equation (35), we deduce that \(\partial _{t_0}\varvec{x}(s,\varvec{\beta })=\varvec{0}_d\) for all \(s\).
It remains to note that the geometrical spreading is expressed as the sum of two determinants:
This completes the proof of Proposition.\(\square \)
In this case the function \(U\) simplifies to
which is solution of the same transport equation (16), but where the second derivatives of the Hamiltonian \(\mathcal {H}^\pm \) are replaced by those of the Hamiltonian \(H^\pm \).
Rights and permissions
About this article
Cite this article
Noumir, Y., Dubois, F. & Lafitte, O. Numerical Eulerian method for linearized gas dynamics in the high frequency regime. Numer. Math. 127, 641–683 (2014). https://doi.org/10.1007/s00211-013-0598-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-013-0598-5