Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Geometric error of finite volume schemes for conservation laws on evolving surfaces

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper studies finite volume schemes for scalar hyperbolic conservation laws on evolving hypersurfaces of \(\mathbb {R}^3\). We compare theoretical schemes assuming knowledge of all geometric quantities to (practical) schemes defined on moving polyhedra approximating the surface. For the former schemes error estimates have already been proven, but the implementation of such schemes is not feasible for complex geometries. The latter schemes, in contrast, only require (easily) computable geometric quantities and are thus more useful for actual computations. We prove that the difference between approximate solutions defined by the respective families of schemes is of the order of the mesh width. In particular, the practical scheme converges to the entropy solution with the same rate as the theoretical one. Numerical experiments show that the proven order of convergence is optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alke, A., Bothe, D.: 3d numerical modeling of soluble surfactant at fluidic interfaces based on the volume-of-fluid method. Fluid Dyn. Mater. Process. 5(4), 345–372 (2009)

    Google Scholar 

  2. Amorim, P., Ben-Artzi, M., LeFloch, P.G.: Hyperbolic conservation laws on manifolds: total variation estimates and the finite volume method. Methods Appl. Anal. 12(3), 291–323 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Amorim, P., LeFloch, P.G., Neves, W.: A geometric approach to error estimates for conservation laws posed on a spacetime. Nonlinear Anal. 74(15), 4898–4917 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Artzi, M., Falcovitz, J., LeFloch, P.G.: Hyperbolic conservation laws on the sphere. A geometry-compatible finite volume scheme. J. Comput. Phys. 228(16), 5650–5668 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Artzi, M., LeFloch, P.G.: Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 24(6), 989–1008 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Booty, M.R., Siegel, M.: A hybrid numerical method for interfacial fluid flow with soluble surfactant. J. Comput. Phys. 229, 3864–3883 (2010)

    Article  MATH  Google Scholar 

  7. Bothe, D., Prüss, J., Simonett, G.: Well-posedness of a two-phase flow with soluble surfactant. In: Nonlinear Elliptic and Parabolic Problems. Progr. Nonlinear Differential Equations Appl., vol. 64, pp. 37–61. Birkhäuser, Basel (2005)

  8. Calhoun, D.A., Helzel, C., LeVeque, R.J.: Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains. SIAM Rev. 50(4), 723–752 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Coquel, F., LeFloch, P.G.: An error estimate for finite volume methods for multidimensional conservation laws. Math. Comput. 63(207), 77–103 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dedner, A., Klöfkorn, R., Nolte, M.: DUNE-AluGrid—a parallel-adaptive unstructured grid implementation for DUNE. 2014 (in preparation)

  11. Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive discretization schemes: abstraction principles and the DUNE-FEM module. Computing 90(3–4), 165–196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47(2), 805–827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dziuk, G., Elliott, C.M.: Surface finite elements for parabolic equations. J. Comput. Math. 25(4), 385–407 (2007)

    MathSciNet  Google Scholar 

  15. Dziuk, G., Kröner, D., Müller, T.: Scalar conservation laws on moving hypersurfaces. Interfaces Free Bound. 15(2), 203–236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giesselmann, J.: A convergence result for finite volume schemes on Riemannian manifolds. M2AN. Math. Model. Numer. Anal. 43(5), 929–955 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giesselmann, J., Wiebe, M.: Finite volume schemes for balance laws on time-dependent surfaces. In: Numerical Methods for Hyperbolic Equations, pp. 251–258. CRC Press, London (2012)

  18. Gilman, P.A.: Magnetohydrodynamic ”shallow-water” equations for the solar tachocline. Astrophys. J. Lett. 544(1), L79–L82 (2000)

    Article  Google Scholar 

  19. Giraldo, F.X.: High-order triangle-based discontinuous galerkin methods for hyperbolic equations on a rotating sphere. J. Comput. Phys. 214(2), 447–465 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. James, J., Lowengrub, J.: A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201(2), 685–722 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. LeFloch, P.G., Okutmustur, B.: Hyperbolic conservation laws on spacetimes. A finite volume scheme based on differential forms. Far East J. Math. Sci. (FJMS) 31(1), 49–83 (2008)

    MathSciNet  MATH  Google Scholar 

  22. LeFloch, P.G., Okutmustur, B., Neves, W.: Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes. Acta Math. Sin. (Engl. Ser.) 25(7), 1041–1066 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lengeler, D., Mller, T.: Scalar conservation laws on constant and time-dependent riemannian manifolds. J. Differ. Equ. 254(4), 1705–1727 (2013)

    Article  MATH  Google Scholar 

  24. Lenz, M., Nemadjieu, S.F., Rumpf, M.: A convergent finite volume scheme for diffusion on evolving surfaces. SIAM J. Numer. Anal. 49(1), 15–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Reister, E., Seifert, U.: Lateral diffusion of a protein on a fluctuating membrane. EPL (Europhys. Lett.) 71(5), 859 (2005)

    Article  Google Scholar 

  26. Rossmanith, J.A.: A wave propagation algorithm for hyperbolic systems on the sphere. J. Comput. Phys. 213(2), 629–658 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schecter, D.A., Boyd, J.F., Gilman, P.A.: ”shallow-water” magnetohydrodynamic waves in the solar tachocline. Astrophys. J. Lett. 551(2), L185–L188 (2001)

    Article  Google Scholar 

  28. Stone, H.A.: A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A Fluid Dyn. 2(1), 111–112 (1990)

    Article  Google Scholar 

  29. Van Oosterom, A., Strackee, J.: The solid angle of a plane triangle. IEEE Trans. Biomed. Eng. BME–30(2), 125–126 (1983)

    Article  Google Scholar 

  30. Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys. 102(1), 211–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge that the work of Thomas Müller was supported by the German Research Foundation (DFG) via SFB TR 71 ‘Geometric Partial Differential Equations’ and by the German National Academic Foundation (Studienstiftung des Deutschen Volkes). Jan Giesselmann would like to thank the German Research Foundation (DFG) for financial support of the project ‘Modeling and sharp interface limits of local and non-local generalized Navier–Stokes–Korteweg Systems’.

The authors would like to express their gratitude to the two anomymous referees for their constructive suggestions to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Müller.

Appendix

Appendix

Here we give the proof of Lemma 8.

Proof

It is sufficient to show

$$\begin{aligned} \Big | \frac{d}{dt} \frac{|K(t)|}{ |\bar{K}(t)|} \Big | \le Ch. \end{aligned}$$
(63)

We have

$$\begin{aligned} \frac{d}{dt} \frac{|K(t)|}{|\bar{K}(t)|}&= \frac{d}{dt} \frac{|K(t)|- |\bar{K}(t)| }{|\bar{K}(t)|} \nonumber \\&= \frac{(|K(t)|- |\bar{K}(t)| )_t }{|\bar{K}(t)|} + \frac{1}{ |\bar{K}(t)|} \Big ( \frac{|K(t)|}{ |\bar{K}(t)|} -1 \Big ) |\bar{K}(t)|_t \end{aligned}$$
(64)

so that, due to Lemma 3, it suffices to show

$$\begin{aligned} \Big |\frac{(|K(t)|- |\bar{K}(t)| )_t }{ |\bar{K}(t)|} \Big |\le C h \quad \text { and } \quad \big | |\bar{K}(t)|_t\big | \le Ch. \end{aligned}$$
(65)

The estimate (65)\(_2\) is immediate, so we turn our attention to (65)\(_1\). Let us assume \(t \in [t_n,t_{n+1}]\) and let \(\bar{K}(t_n)\) be the convex hull of the vertices \(v_0:=(0,0,0),\, v_1:= (h,0,0),\,v_2:= (x,y,0)\). We define

$$\begin{aligned} \varPhi ^n(\cdot , t) : \varGamma (t_n) \rightarrow \varGamma (t), \quad \varPhi ^n(\cdot ,t):= \varPhi (\cdot ,t) \circ \varPhi (\cdot ,t_n)^{-1}, \end{aligned}$$

such that \(\varPhi ^n(\cdot ,t_n)\) is the identity map. We denote the canonical projection \(\bar{K}(t_n) \rightarrow K(t_n)\) by \(c\) and abbreviate \(\varPhi ^n \circ c\) by \(\varPhi ^n_c\). The scaled directional derivatives are denoted \(\partial _{v_1} := h \partial _{x_1}\) and \(\partial _{v_2}:= x\partial _{x_1} + y\partial _{x_2}.\) Then,

$$\begin{aligned} (|K(t)|- |\bar{K}(t)| )_t&= \frac{d}{dt} \left( \frac{1}{hy} \int \limits _{\bar{K}(t_n)} \Vert \partial _{v_1} \varPhi ^n_c(x,t) \times \partial _{v_2} \varPhi ^n_c(x,t)\Vert \, d\bar{K}(t_n) \right. \nonumber \\&\left. -\frac{1}{2} \Vert (\varPhi ^n(v_1,t) - \varPhi ^n(v_0,t)) \times (\varPhi ^n(v_2,t) - \varPhi ^n(v_0,t))\Vert \right) \nonumber \\ \end{aligned}$$
(66)

and thus

$$\begin{aligned}&\big | (|K(t)|- |\bar{K}(t)| )_t\big | \nonumber \\&\le \frac{1}{hy} \left( \int \limits _{\bar{K}(t_n)} \big \Vert \partial _t \partial _{v_1} \varPhi ^n_c(x,t) \times \partial _{v_2} \varPhi ^n_c(x,t) + \partial _{v_1} \varPhi ^n_c(x,t) \times \partial _t\partial _{v_2} \varPhi ^n_c(x,t) \right. \nonumber \\&\quad \left. - \partial _t(\varPhi ^n(v_1,t) - \varPhi ^n(v_0,t)) \times (\varPhi ^n(v_2,t) - \varPhi ^n(v_0,t)) \right. \nonumber \\&\quad \left. - (\varPhi ^n(v_1,t) - \varPhi ^n(v_0,t)) \times \partial _t(\varPhi ^n(v_2,t)\right. \nonumber \\&\quad \left. - \varPhi ^n(v_0,t)) \big \Vert \, d\bar{K}(t_n)\right) . \end{aligned}$$
(67)

Using the mean value theorem this implies

$$\begin{aligned}&\Big |2 (|K(t)|- |\bar{K}(t)| )_t\Big | \nonumber \\&\quad \le \big \Vert \partial _t \partial _{v_1} \varPhi ^n_c(\xi _1,t) \times \partial _{v_2} \varPhi ^n_c(\xi _1,t) + \partial _{v_1} \varPhi ^n_c(\xi _2,t) \times \partial _t\partial _{v_2} \varPhi ^n_c(\xi _2,t) \nonumber \\&\quad \quad - \partial _{v_1} \partial _t\varPhi ^n(\xi _3,t) \times \partial _{v_2} \varPhi ^n(\xi _4,t) - \partial _{v_1} \varPhi ^n(\xi _5,t) \times \partial _{v_2} \partial _t\varPhi ^n(\xi _6,t) \big \Vert \quad \quad \end{aligned}$$
(68)

for some \(\xi _1,\dots \xi _6 \in \bar{K}(t_n)\). We have

$$\begin{aligned} ( \partial _t \partial _{x_1} \varPhi _c^n)(\xi _1,t) = D( \partial _t \varPhi ^n)( c(\xi _1),t) \partial _{x_1} c(\xi _1) = (\partial _{x_1} \partial _t \varPhi ^n)( \xi _3,t) + \mathcal {O}(h)\quad \quad \end{aligned}$$
(69)

because of (23) and the regularity of \(\varPhi ^n\). This, and a straightforward estimate for the second factor in the vector product, leads to

$$\begin{aligned} \partial _t \partial _{v_1} \varPhi ^n_c(\xi _1,t) \times \partial _{v_2} \varPhi ^n_c(\xi _1,t) - \partial _{v_1}\partial _t\varPhi ^n(\xi _3,t) \times \partial _{v_2} \varPhi ^n(\xi _4,t) = \mathcal {O}(h^3). \end{aligned}$$
(70)

Using a similar estimate for the remaining terms in (68) we find

$$\begin{aligned} (|K(t)|- |\bar{K}(t)| )_t = \mathcal {O}(h^3) \end{aligned}$$
(71)

which implies (65)\(_1\) because of (5).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giesselmann, J., Müller, T. Geometric error of finite volume schemes for conservation laws on evolving surfaces. Numer. Math. 128, 489–516 (2014). https://doi.org/10.1007/s00211-014-0621-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0621-5

Mathematics Subject Classification (2000)