Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Error analysis of generalized-\(\alpha \) Lie group time integration methods for constrained mechanical systems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Generalized-\(\alpha \) methods are very popular in structural dynamics. They are methods of Newmark type and combine favourable stability properties with second order convergence for unconstrained second order systems in linear spaces. Recently, they were extended to constrained systems in flexible multibody dynamics that have a configuration space with Lie group structure. In the present paper, the convergence of these Lie group methods is analysed by a coupled one-step error recursion for differential and algebraic solution components. It is shown that spurious oscillations in the transient phase result from order reduction that may be avoided by a perturbation of starting values or by index reduction. Numerical tests for a benchmark problem from the literature illustrate the results of the theoretical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnold, M.: A perturbation analysis for the dynamical simulation of mechanical multibody systems. Appl. Numer. Math. 18, 37–56 (1995). doi:10.1016/0168-9274(95)00042-S

  2. Arnold, M.: The generalized-\(\alpha \) method in industrial multibody system simulation. In: K. Arczewski, J. Fraczek, M. Wojtyra (eds.) Proceedings of Multibody Dynamics 2009 (ECCOMAS Thematic Conference), Warsaw (2009)

  3. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007). doi:10.1007/s11044-007-9084-0

  4. Arnold, M., Brüls, O., Cardona, A.: Convergence analysis of generalized-\(\alpha \) Lie group integrators for constrained systems. In: J. Samin, P. Fisette (eds.) Proceedings of Multibody Dynamics 2011 (ECCOMAS Thematic Conference), Brussels (2011)

  5. Arnold, M., Burgermeister, B., Führer, C., Hippmann, G., Rill, G.: Numerical methods in vehicle system dynamics: state of the art and current developments. Veh. Syst. Dyn. 49, 1159–1207 (2011). doi:10.1080/00423114.2011.582953

    Article  Google Scholar 

  6. Bottasso, C., Bauchau, O., Cardona, A.: Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations. SIAM J. Sci. Comput. 29, 397–414 (2007). doi:10.1137/050638503

    Article  MATH  MathSciNet  Google Scholar 

  7. Bottasso, C., Borri, M.: Integrating finite rotations. Comput. Methods Appl. Mech. Eng. 164, 307–331 (1998). doi:10.1016/S0045-7825(98)00031-0

  8. Brüls, O., Arnold, M., Cardona, A.: Two Lie group formulations for dynamic multibody systems with large rotations. In: Proceedings of IDETC/MSNDC 2011, ASME 2011 International Design Engineering Technical Conferences, Washington (2011)

  9. Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody dynamics. J. Comput. Nonlinear Dyn. 5, 031002 (2010). doi:10.1115/1.4001370

  10. Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121–137 (2012). doi: 10.1016/j.mechmachtheory.2011.07.017

    Article  Google Scholar 

  11. Cardona, A., Géradin, M.: Time integration of the equations of motion in mechanism analysis. Comput. Struct. 33, 801–820 (1989)

    Article  MATH  Google Scholar 

  12. Cardona, A., Géradin, M.: Numerical integration of second order differential-algebraic systems in flexible mechanism dynamics. In: Seabra Pereira, M., Ambrósio, J. (eds.) Computer-Aided Analysis of Rigid and Flexible Mechanical Systems. NATO ASI Series, vol. E-268. Kluwer Academic Publishers, Dordrecht (1994). doi:10.1007/978-94-011-1166-9_16

  13. Celledoni, E., Owren, B.: Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Eng. 192, 421–438 (2003). doi:10.1016/S0045-7825(02)00520-0

  14. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. ASME J. Appl. Mech. 60, 371–375 (1993). doi:10.1115/1.2900803

  15. Crouch, P., Grossman, R.: Numerical integration of ODEs on manifolds. J. Nonlinear Sci. 3, 1–33 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Deuflhard, P., Hairer, E., Zugck, J.: One-step and extrapolation methods for differential-algebraic systems. Numer. Math. 51, 501–516 (1987). doi:10.1007/BF01400352

    Article  MATH  MathSciNet  Google Scholar 

  17. Erlicher, S., Bonaventura, L., Bursi, O.: The analysis of the generalized-\(\alpha \) method for non-linear dynamic problems. Comput. Mech. 28, 83–104 (2002). doi: 10.1007/s00466-001-0273-z

    Article  MATH  MathSciNet  Google Scholar 

  18. Gear, C., Gupta, G., Leimkuhler, B.: Automatic integration of Euler–Lagrange equations with constraints. J. Comput. Appl. Math. 12&13, 77–90 (1985). doi:10.1016/0377-0427(85)90008-1

  19. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001)

    Google Scholar 

  20. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  21. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  22. Hilber, H., Hughes, T.: Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6, 99–117 (1978). doi:10.1002/eqe.4290060111

    Article  Google Scholar 

  23. Iserles, A., Munthe-Kaas, H., Nørsett, S., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)

    Article  Google Scholar 

  24. Jay, L.: Convergence of the generalized-\(\alpha \) method for constrained systems in mechanics with nonholonomic constraints. Tech. Rep. 181, University of Iowa, Reports on Computational Mathematics (2011)

  25. Jay, L., Negrut, D.: Extensions of the HHT-method to differential-algebraic equations in mechanics. Electron. Trans. Numer. Anal. 26, 190–208 (2007)

    MATH  MathSciNet  Google Scholar 

  26. Jay, L., Negrut, D.: A second order extension of the generalized-\(\alpha \) method for constrained systems in mechanics. In: Bottasso, C. (ed.) Multibody Dynamics. Computational Methods and Applications, Computational Methods in Applied Sciences, vol. 12, pp. 143–158. Springer, Dordrecht (2008). doi:10.1007/978-1-4020-8829-2_8

  27. Krenk, S.: Energy conservation in Newmark based time integration algorithms. Comput. Methods Appl. Mech. Eng. 195, 6110–6124 (2006). doi:10.1016/j.cma.2005.12.001

    Article  MATH  MathSciNet  Google Scholar 

  28. Lee, T., Leok, M., McClamroch, N.: Lie group variational integrators for the full body problem. Comput. Methods Appl. Mech. Eng. 196, 2907–2924 (2007). doi:10.1016/j.cma.2007.01.017

    Article  MATH  MathSciNet  Google Scholar 

  29. Lunk, C., Simeon, B.: Solving constrained mechanical systems by the family of Newmark and \(\alpha \)-methods. Z. Angew. Math. Mech. 86, 772–784 (2006). doi:10.1002/zamm.200610285

  30. Müller, A.: Approximation of finite rigid body motions from velocity fields. ZAMM Z. Angew. Math. Mech. 90, 514–521 (2010). doi:10.1002/zamm.200900383

  31. Munthe-Kaas, H.: Lie-Butcher theory for Runge–Kutta methods. BIT Numer. Math. 35, 572–587 (1995). doi:10.1007/BF01739828

    Article  MATH  MathSciNet  Google Scholar 

  32. Munthe-Kaas, H.: Runge-Kutta methods on Lie groups. BIT Numer. Math. 38, 92–111 (1998). doi:10.1007/BF02510919

    Article  MATH  MathSciNet  Google Scholar 

  33. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On the use of the HHT method in the context of index 3 differential algebraic equations of multi-body dynamics. In: Goicolea, J., Cuadrado, J., García Orden, J. (eds.) Proceedings of Multibody Dynamics 2005 (ECCOMAS Thematic Conference). Madrid (2005)

  34. Newmark, N.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67–94 (1959)

    Google Scholar 

  35. Orel, B.: Accumulation of global error in Lie group methods for linear ordinary differential equations. Electron. Trans. Numer. Anal. 37, 252–262 (2010)

    MATH  MathSciNet  Google Scholar 

  36. Simo, J., Tarnow, N.: The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP 43, 757–792 (1992). doi:10.1007/BF00913408

    Article  MATH  MathSciNet  Google Scholar 

  37. Simo, J., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988). doi:10.1016/0045-7825(88)90073-4

  38. Wensch, J.: Extrapolation methods in Lie groups. Numer. Math. 89, 591–604 (2001). doi:10.1007/s211-001-8017-5

    Article  MATH  MathSciNet  Google Scholar 

  39. Wensch, J., Casas, F.: Extrapolation in Lie groups with approximated BCH-formula. Appl. Numer. Math. 42, 465–472 (2002). doi:10.1016/S0168-9274(01)00168-4

    Article  MATH  MathSciNet  Google Scholar 

  40. Yen, J., Petzold, L., Raha, S.: A time integration algorithm for flexible mechanism dynamics: the DAE \(\alpha \)-method. Comput. Methods Appl. Mech. Eng. 158, 341–355 (1998). doi:10.1016/S0045-7825(97)00261-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Arnold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnold, M., Brüls, O. & Cardona, A. Error analysis of generalized-\(\alpha \) Lie group time integration methods for constrained mechanical systems. Numer. Math. 129, 149–179 (2015). https://doi.org/10.1007/s00211-014-0633-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0633-1

Mathematics Subject Classification