Abstract
Generalized-\(\alpha \) methods are very popular in structural dynamics. They are methods of Newmark type and combine favourable stability properties with second order convergence for unconstrained second order systems in linear spaces. Recently, they were extended to constrained systems in flexible multibody dynamics that have a configuration space with Lie group structure. In the present paper, the convergence of these Lie group methods is analysed by a coupled one-step error recursion for differential and algebraic solution components. It is shown that spurious oscillations in the transient phase result from order reduction that may be avoided by a perturbation of starting values or by index reduction. Numerical tests for a benchmark problem from the literature illustrate the results of the theoretical investigations.






Similar content being viewed by others
References
Arnold, M.: A perturbation analysis for the dynamical simulation of mechanical multibody systems. Appl. Numer. Math. 18, 37–56 (1995). doi:10.1016/0168-9274(95)00042-S
Arnold, M.: The generalized-\(\alpha \) method in industrial multibody system simulation. In: K. Arczewski, J. Fraczek, M. Wojtyra (eds.) Proceedings of Multibody Dynamics 2009 (ECCOMAS Thematic Conference), Warsaw (2009)
Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007). doi:10.1007/s11044-007-9084-0
Arnold, M., Brüls, O., Cardona, A.: Convergence analysis of generalized-\(\alpha \) Lie group integrators for constrained systems. In: J. Samin, P. Fisette (eds.) Proceedings of Multibody Dynamics 2011 (ECCOMAS Thematic Conference), Brussels (2011)
Arnold, M., Burgermeister, B., Führer, C., Hippmann, G., Rill, G.: Numerical methods in vehicle system dynamics: state of the art and current developments. Veh. Syst. Dyn. 49, 1159–1207 (2011). doi:10.1080/00423114.2011.582953
Bottasso, C., Bauchau, O., Cardona, A.: Time-step-size-independent conditioning and sensitivity to perturbations in the numerical solution of index three differential algebraic equations. SIAM J. Sci. Comput. 29, 397–414 (2007). doi:10.1137/050638503
Bottasso, C., Borri, M.: Integrating finite rotations. Comput. Methods Appl. Mech. Eng. 164, 307–331 (1998). doi:10.1016/S0045-7825(98)00031-0
Brüls, O., Arnold, M., Cardona, A.: Two Lie group formulations for dynamic multibody systems with large rotations. In: Proceedings of IDETC/MSNDC 2011, ASME 2011 International Design Engineering Technical Conferences, Washington (2011)
Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody dynamics. J. Comput. Nonlinear Dyn. 5, 031002 (2010). doi:10.1115/1.4001370
Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121–137 (2012). doi: 10.1016/j.mechmachtheory.2011.07.017
Cardona, A., Géradin, M.: Time integration of the equations of motion in mechanism analysis. Comput. Struct. 33, 801–820 (1989)
Cardona, A., Géradin, M.: Numerical integration of second order differential-algebraic systems in flexible mechanism dynamics. In: Seabra Pereira, M., Ambrósio, J. (eds.) Computer-Aided Analysis of Rigid and Flexible Mechanical Systems. NATO ASI Series, vol. E-268. Kluwer Academic Publishers, Dordrecht (1994). doi:10.1007/978-94-011-1166-9_16
Celledoni, E., Owren, B.: Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Eng. 192, 421–438 (2003). doi:10.1016/S0045-7825(02)00520-0
Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. ASME J. Appl. Mech. 60, 371–375 (1993). doi:10.1115/1.2900803
Crouch, P., Grossman, R.: Numerical integration of ODEs on manifolds. J. Nonlinear Sci. 3, 1–33 (1993)
Deuflhard, P., Hairer, E., Zugck, J.: One-step and extrapolation methods for differential-algebraic systems. Numer. Math. 51, 501–516 (1987). doi:10.1007/BF01400352
Erlicher, S., Bonaventura, L., Bursi, O.: The analysis of the generalized-\(\alpha \) method for non-linear dynamic problems. Comput. Mech. 28, 83–104 (2002). doi: 10.1007/s00466-001-0273-z
Gear, C., Gupta, G., Leimkuhler, B.: Automatic integration of Euler–Lagrange equations with constraints. J. Comput. Appl. Math. 12&13, 77–90 (1985). doi:10.1016/0377-0427(85)90008-1
Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)
Hilber, H., Hughes, T.: Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6, 99–117 (1978). doi:10.1002/eqe.4290060111
Iserles, A., Munthe-Kaas, H., Nørsett, S., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)
Jay, L.: Convergence of the generalized-\(\alpha \) method for constrained systems in mechanics with nonholonomic constraints. Tech. Rep. 181, University of Iowa, Reports on Computational Mathematics (2011)
Jay, L., Negrut, D.: Extensions of the HHT-method to differential-algebraic equations in mechanics. Electron. Trans. Numer. Anal. 26, 190–208 (2007)
Jay, L., Negrut, D.: A second order extension of the generalized-\(\alpha \) method for constrained systems in mechanics. In: Bottasso, C. (ed.) Multibody Dynamics. Computational Methods and Applications, Computational Methods in Applied Sciences, vol. 12, pp. 143–158. Springer, Dordrecht (2008). doi:10.1007/978-1-4020-8829-2_8
Krenk, S.: Energy conservation in Newmark based time integration algorithms. Comput. Methods Appl. Mech. Eng. 195, 6110–6124 (2006). doi:10.1016/j.cma.2005.12.001
Lee, T., Leok, M., McClamroch, N.: Lie group variational integrators for the full body problem. Comput. Methods Appl. Mech. Eng. 196, 2907–2924 (2007). doi:10.1016/j.cma.2007.01.017
Lunk, C., Simeon, B.: Solving constrained mechanical systems by the family of Newmark and \(\alpha \)-methods. Z. Angew. Math. Mech. 86, 772–784 (2006). doi:10.1002/zamm.200610285
Müller, A.: Approximation of finite rigid body motions from velocity fields. ZAMM Z. Angew. Math. Mech. 90, 514–521 (2010). doi:10.1002/zamm.200900383
Munthe-Kaas, H.: Lie-Butcher theory for Runge–Kutta methods. BIT Numer. Math. 35, 572–587 (1995). doi:10.1007/BF01739828
Munthe-Kaas, H.: Runge-Kutta methods on Lie groups. BIT Numer. Math. 38, 92–111 (1998). doi:10.1007/BF02510919
Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On the use of the HHT method in the context of index 3 differential algebraic equations of multi-body dynamics. In: Goicolea, J., Cuadrado, J., García Orden, J. (eds.) Proceedings of Multibody Dynamics 2005 (ECCOMAS Thematic Conference). Madrid (2005)
Newmark, N.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67–94 (1959)
Orel, B.: Accumulation of global error in Lie group methods for linear ordinary differential equations. Electron. Trans. Numer. Anal. 37, 252–262 (2010)
Simo, J., Tarnow, N.: The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP 43, 757–792 (1992). doi:10.1007/BF00913408
Simo, J., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988). doi:10.1016/0045-7825(88)90073-4
Wensch, J.: Extrapolation methods in Lie groups. Numer. Math. 89, 591–604 (2001). doi:10.1007/s211-001-8017-5
Wensch, J., Casas, F.: Extrapolation in Lie groups with approximated BCH-formula. Appl. Numer. Math. 42, 465–472 (2002). doi:10.1016/S0168-9274(01)00168-4
Yen, J., Petzold, L., Raha, S.: A time integration algorithm for flexible mechanism dynamics: the DAE \(\alpha \)-method. Comput. Methods Appl. Mech. Eng. 158, 341–355 (1998). doi:10.1016/S0045-7825(97)00261-2
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Arnold, M., Brüls, O. & Cardona, A. Error analysis of generalized-\(\alpha \) Lie group time integration methods for constrained mechanical systems. Numer. Math. 129, 149–179 (2015). https://doi.org/10.1007/s00211-014-0633-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-014-0633-1