Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gradient schemes for linear and non-linear elasticity equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The gradient scheme framework provides a unified analysis setting for many different families of numerical methods for diffusion equations. We show in this paper that the gradient scheme framework can be adapted to elasticity equations, and provides error estimates for linear elasticity and convergence results for non-linear elasticity. We also establish that several classical and modern numerical methods for elasticity are embedded in the gradient scheme framework, which allows us to obtain convergence results for these methods in cases where the solution does not satisfy the full \(H^2\)-regularity or for non-linear models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The divergence of a tensor \({\varvec{\tau }}\) is taken row by row, i.e. if \({\varvec{\tau }}=({\varvec{\tau }}_{i,j})_{i,j=1,\ldots ,d}\) then \(\mathrm{div}({\varvec{\tau }})=(\sum _{j=1}^d\partial _j {\varvec{\tau }}_{i,j})_{i=1,\ldots ,d}\). This definition is consistent with our definition of \(\nabla \) by row: \(-\mathrm{div}\) is the formal dual operator of \(\nabla \).

References

  1. Barrientos, M.A., Gatica, G.N., Stephan, E.P.: A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate. Numer. Math. 91(2), 197–222 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Braess, D.: Finite Elements. Theory, Fast Solver, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)

  3. Braess, D., Carstensen, C., Reddy, B.D.: Uniform convergence and a posteriori error estimators for the enhanced strain finite element method. Numerische Mathematik 96, 461–479 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Braess, D., Ming, P.-B.: A finite element method for nearly incompressible elasticity problems. Math. Comput. 74, 25–52 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  6. Brenner, S.C., Sung, L.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–338 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burman, E., Hansbo, P.: A stabilized non-conforming finite element method for incompressible flow. Comput. Methods Appl. Mech. Eng. 195, 2881–2899 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cervera, M., Chiumenti, M., Codina, R.: Mixed stabilized finite element methods in nonlinear solid mechanics Part II: strain localization. Comput. Methods Appl. Mech. Eng. 199(37–40), 2571–2589 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

    MATH  Google Scholar 

  10. Ciarlet, P.G.: Mathematical Elasticity Volume I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

  11. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  12. Djoko, J.K., Lamichhane, B.P., Reddy, B.D., Wohlmuth, B.I.: Conditions for equivalence between the Hu–Washizu and related formulations, and computational behavior in the incompressible limit. Comput. Methods Appl. Mech. Eng. 195, 4161–4178 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Droniou, J.: Finite volume schemes for fully non-linear elliptic equations in divergence form. Math. Model. Numer. Anal. 40(6), 1069–1100 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: Gradient schemes for elliptic and parabolic problems (2014, in preparation)

  15. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23(13), 2395–2432 (2013). doi:10.1142/S0218202513500358

    Article  MATH  MathSciNet  Google Scholar 

  16. Eymard, R., Féron, P., Gallouët, T., Herbin, R., Guichard, C.: Gradient schemes for the Stefan problem. Int. J. Finite Vol. 10 (2013)

  17. Eymard, R., Gallouët, T., Herbin, R.: Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids. J. Numer. Math. 17(3), 173–193 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Eymard, R., Guichard, C., Herbin, R.: Small-stencil 3D schemes for diffusive flows in porous media. ESAIM Math. Model. Numer. Anal. 46(2), 265–290 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Eymard, R., Handlovičová, A., Herbin, R., Mikula, K., Stašová, O.: Gradient schemes for image processing. In Finite Volumes for Complex Applications. VI. Problems and Perspectives. Volume 1, 2. Springer Proceedings in Mathematics, vol. 4, pp. 429–437. Springer, Heidelberg (2011)

  20. Eymard, R., Herbin, R.: Gradient scheme approximations for diffusion problems. In: Finite Volumes for Complex Applications. VI. Problems and Perspectives. Volume 1, 2. Springer Proceedings in Mathematics, vol. 4, pages 439–447. Springer, Heidelberg (2011)

  21. Eymard, R., Gallouët, T., Herbin, R.: \(RT_k\) mixed finite elements for some nonlinear problems. In: MAMERN13: 5th International Conference on Approximation Methods and Numerical Modelling in Environment and Natural Resources, Granada, Spain, April 22-25 (2013) (to appear)

  22. Falk, R.S., Morley, M.E.: Equivalence of finite element methods for problems in elasticity. SIAM J. Numer. Anal. 27, 1486–1505 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Flanagan, D.P., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Numer. Methods Eng. 17, 679–706 (1981)

    Article  MATH  Google Scholar 

  24. Gatica, G.N., Stephan, E.P.: A mixed-FEM formulation for nonlinear incompressible elasticity in the plane. Numer. Methods Partial Differ. Equ. 18, 105–128 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kasper, E.P., Taylor, R.L.: A mixed-enhanced strain method. Part I: geometrically linear problems. Comput. Struct. 75, 237–250 (2000)

    Article  Google Scholar 

  26. Knobloch, P.: On korn’s inequality for nonconforming finite elements. Technical report, Technische Mechanik, 2000. Band 20, Heft 3

  27. Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Mathematical Surveys and Monographs, vol. 85. American Mathematical Society, Providence (2001)

  28. Lamichhane, B.P.: Mortar finite elements for coupling compressible and nearly incompressible materials in elasticity. Int. J. Numer. Anal. Model. 6(2), 177–192 (2009)

    MATH  MathSciNet  Google Scholar 

  29. Lamichhane, B.P.: From the Hu–Washizu formulation to the average nodal strain formulation. Comput. Methods Appl. Mech. Eng. 198, 3957–3961 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lamichhane, B.P., Reddy, B.D., Wohlmuth, B.I.: Convergence in the incompressible limit of finite element approximations based on the Hu–Washizu formulation. Numerische Mathematik 104, 151–175 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lemaire, S.: Discrétisations non-conformes d’un modèle poromécanique sur maillages généraux. PhD Thesis, University Paris–Est, Robert Eymard (Dir.) [oai:tel. archives-ouvertes.fr:tel-00957292] (2013). http://tel.archives-ouvertes.fr/tel-00957292

  32. Leray, J., Lions, J.-L.: Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93, 97–107 (1965)

    MATH  MathSciNet  Google Scholar 

  33. Manteuffel, T.A., McCormick, S.F., Schmidt, J.G., Westphal, C.R.: First-order system least squares for geometrically nonlinear elasticity. SIAM J. Numer. Anal. 44, 2057–2081 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Minty, G.J.: On a “monotonicity” method for the solution of non-linear equations in Banach spaces. Proc Natl. Acad. Sci. USA 50(6), 1038 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  35. Nečas, J.: Introduction to the Theory of Nonlinear Elliptic Equations. A Wiley-Interscience Publication. Wiley, Chichester (1986). Reprint of the 1983 edition

  36. Ortner, C.: Nonconforming finite-element discretization of convex variational problems. IMA J. Numer. Anal. 31, 847–864 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ortner, C., Süli, E.: Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45(4), 1370–1397 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Puso, M.A., Solberg, J.: A stabilized nodally integrated tetrahedral. Int. J. Numer. Methods Eng. 67, 841–867 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  40. Romano, G., Marrotti de Sciarra, F., Diaco, M.: Well-posedness and numerical performances of the strain gap method. Int. J. Numer. Methods Eng. 51, 103–126 (2001)

    Article  MATH  Google Scholar 

  41. Simo, J.C., Rifai, M.S.: A class of assumed strain method and the methods of incompatible modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Droniou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Droniou, J., Lamichhane, B.P. Gradient schemes for linear and non-linear elasticity equations. Numer. Math. 129, 251–277 (2015). https://doi.org/10.1007/s00211-014-0636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0636-y

Mathematics Subject Classification (1991)