Abstract
The gradient scheme framework provides a unified analysis setting for many different families of numerical methods for diffusion equations. We show in this paper that the gradient scheme framework can be adapted to elasticity equations, and provides error estimates for linear elasticity and convergence results for non-linear elasticity. We also establish that several classical and modern numerical methods for elasticity are embedded in the gradient scheme framework, which allows us to obtain convergence results for these methods in cases where the solution does not satisfy the full \(H^2\)-regularity or for non-linear models.
Similar content being viewed by others
Notes
The divergence of a tensor \({\varvec{\tau }}\) is taken row by row, i.e. if \({\varvec{\tau }}=({\varvec{\tau }}_{i,j})_{i,j=1,\ldots ,d}\) then \(\mathrm{div}({\varvec{\tau }})=(\sum _{j=1}^d\partial _j {\varvec{\tau }}_{i,j})_{i=1,\ldots ,d}\). This definition is consistent with our definition of \(\nabla \) by row: \(-\mathrm{div}\) is the formal dual operator of \(\nabla \).
References
Barrientos, M.A., Gatica, G.N., Stephan, E.P.: A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate. Numer. Math. 91(2), 197–222 (2002)
Braess, D.: Finite Elements. Theory, Fast Solver, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)
Braess, D., Carstensen, C., Reddy, B.D.: Uniform convergence and a posteriori error estimators for the enhanced strain finite element method. Numerische Mathematik 96, 461–479 (2004)
Braess, D., Ming, P.-B.: A finite element method for nearly incompressible elasticity problems. Math. Comput. 74, 25–52 (2005)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)
Brenner, S.C., Sung, L.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–338 (1992)
Burman, E., Hansbo, P.: A stabilized non-conforming finite element method for incompressible flow. Comput. Methods Appl. Mech. Eng. 195, 2881–2899 (2006)
Cervera, M., Chiumenti, M., Codina, R.: Mixed stabilized finite element methods in nonlinear solid mechanics Part II: strain localization. Comput. Methods Appl. Mech. Eng. 199(37–40), 2571–2589 (2010)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)
Ciarlet, P.G.: Mathematical Elasticity Volume I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)
Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)
Djoko, J.K., Lamichhane, B.P., Reddy, B.D., Wohlmuth, B.I.: Conditions for equivalence between the Hu–Washizu and related formulations, and computational behavior in the incompressible limit. Comput. Methods Appl. Mech. Eng. 195, 4161–4178 (2006)
Droniou, J.: Finite volume schemes for fully non-linear elliptic equations in divergence form. Math. Model. Numer. Anal. 40(6), 1069–1100 (2006)
Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: Gradient schemes for elliptic and parabolic problems (2014, in preparation)
Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23(13), 2395–2432 (2013). doi:10.1142/S0218202513500358
Eymard, R., Féron, P., Gallouët, T., Herbin, R., Guichard, C.: Gradient schemes for the Stefan problem. Int. J. Finite Vol. 10 (2013)
Eymard, R., Gallouët, T., Herbin, R.: Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids. J. Numer. Math. 17(3), 173–193 (2009)
Eymard, R., Guichard, C., Herbin, R.: Small-stencil 3D schemes for diffusive flows in porous media. ESAIM Math. Model. Numer. Anal. 46(2), 265–290 (2012)
Eymard, R., Handlovičová, A., Herbin, R., Mikula, K., Stašová, O.: Gradient schemes for image processing. In Finite Volumes for Complex Applications. VI. Problems and Perspectives. Volume 1, 2. Springer Proceedings in Mathematics, vol. 4, pp. 429–437. Springer, Heidelberg (2011)
Eymard, R., Herbin, R.: Gradient scheme approximations for diffusion problems. In: Finite Volumes for Complex Applications. VI. Problems and Perspectives. Volume 1, 2. Springer Proceedings in Mathematics, vol. 4, pages 439–447. Springer, Heidelberg (2011)
Eymard, R., Gallouët, T., Herbin, R.: \(RT_k\) mixed finite elements for some nonlinear problems. In: MAMERN13: 5th International Conference on Approximation Methods and Numerical Modelling in Environment and Natural Resources, Granada, Spain, April 22-25 (2013) (to appear)
Falk, R.S., Morley, M.E.: Equivalence of finite element methods for problems in elasticity. SIAM J. Numer. Anal. 27, 1486–1505 (1990)
Flanagan, D.P., Belytschko, T.: A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Numer. Methods Eng. 17, 679–706 (1981)
Gatica, G.N., Stephan, E.P.: A mixed-FEM formulation for nonlinear incompressible elasticity in the plane. Numer. Methods Partial Differ. Equ. 18, 105–128 (2002)
Kasper, E.P., Taylor, R.L.: A mixed-enhanced strain method. Part I: geometrically linear problems. Comput. Struct. 75, 237–250 (2000)
Knobloch, P.: On korn’s inequality for nonconforming finite elements. Technical report, Technische Mechanik, 2000. Band 20, Heft 3
Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Mathematical Surveys and Monographs, vol. 85. American Mathematical Society, Providence (2001)
Lamichhane, B.P.: Mortar finite elements for coupling compressible and nearly incompressible materials in elasticity. Int. J. Numer. Anal. Model. 6(2), 177–192 (2009)
Lamichhane, B.P.: From the Hu–Washizu formulation to the average nodal strain formulation. Comput. Methods Appl. Mech. Eng. 198, 3957–3961 (2009)
Lamichhane, B.P., Reddy, B.D., Wohlmuth, B.I.: Convergence in the incompressible limit of finite element approximations based on the Hu–Washizu formulation. Numerische Mathematik 104, 151–175 (2006)
Lemaire, S.: Discrétisations non-conformes d’un modèle poromécanique sur maillages généraux. PhD Thesis, University Paris–Est, Robert Eymard (Dir.) [oai:tel. archives-ouvertes.fr:tel-00957292] (2013). http://tel.archives-ouvertes.fr/tel-00957292
Leray, J., Lions, J.-L.: Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93, 97–107 (1965)
Manteuffel, T.A., McCormick, S.F., Schmidt, J.G., Westphal, C.R.: First-order system least squares for geometrically nonlinear elasticity. SIAM J. Numer. Anal. 44, 2057–2081 (2006)
Minty, G.J.: On a “monotonicity” method for the solution of non-linear equations in Banach spaces. Proc Natl. Acad. Sci. USA 50(6), 1038 (1963)
Nečas, J.: Introduction to the Theory of Nonlinear Elliptic Equations. A Wiley-Interscience Publication. Wiley, Chichester (1986). Reprint of the 1983 edition
Ortner, C.: Nonconforming finite-element discretization of convex variational problems. IMA J. Numer. Anal. 31, 847–864 (2011)
Ortner, C., Süli, E.: Discontinuous Galerkin finite element approximation of nonlinear second-order elliptic and hyperbolic systems. SIAM J. Numer. Anal. 45(4), 1370–1397 (2007)
Puso, M.A., Solberg, J.: A stabilized nodally integrated tetrahedral. Int. J. Numer. Methods Eng. 67, 841–867 (2006)
Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)
Romano, G., Marrotti de Sciarra, F., Diaco, M.: Well-posedness and numerical performances of the strain gap method. Int. J. Numer. Methods Eng. 51, 103–126 (2001)
Simo, J.C., Rifai, M.S.: A class of assumed strain method and the methods of incompatible modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Droniou, J., Lamichhane, B.P. Gradient schemes for linear and non-linear elasticity equations. Numer. Math. 129, 251–277 (2015). https://doi.org/10.1007/s00211-014-0636-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-014-0636-y