Abstract
We consider the finite element approximation of the stationary Stokes equations with slip boundary conditions on a domain with a smooth curved boundary. The slip boundary condition is imposed weakly with the penalty method on polygonal domains approaching the smooth domain. For Taylor-Hood elements, we derive error estimates which depend on the penalty parameter \(\varepsilon \), the disctretization parameter \(h\) and the approximation error of the normal to the boundary. In particular, if in the penalty term we use the normal to the polygonal boundary, the best convergence order is \(2/3\) and it is obtained with \(\varepsilon =c \, h^{2/3}\). This convergence result shows that Babuška’s paradox associated to Stokes equations with slip boundary conditions is circumvented. A numerical example illustrates the theoretical results, notably that regularized normal approximations give better approximations and convergence orders.
Similar content being viewed by others
References
Babuška, I.: Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme der Theorie des partiellen Differentialgleichungen auch im Zusammenhang mit der Elasticitätstheorie 1, 2. Czechoslov. Math. J. 11(76–105), 165–203 (1961). (in Russian)
Babuška, I.: The theory of small changes in the domain of existence in the theory of partial differential equations and its applications. In: Differential Equations and their Applications, pp. 13–26. Academic Press, London (1963)
Babuška, I.: The finite element method with penalty. Math. Comput. 27, 221–228 (1973)
Bänsch, E., Deckelnick, K.: Optimal error estimates for the Stokes and Navier–Stokes equations with slip-boundary condition. Modélisation mathématique et analyse numérique (RAIRO). M2AN Math. Model. Numer. Anal. 33, 923–938 (1999)
Bernardi, C.: Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26, 212–234 (1989)
Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series in Computational Mathematics, vol. 15 (1991)
Caglar, A., Liakos, A.: Weak imposition of boundary conditions for the Navier–Stokes equations by a penalty method. Int. J. Numer. Methods Fluids 61, 411–431 (2009)
Cuvelier, C., Driessen, J.M.: Thermocapillary free boundaries in crystal growth. J. Fluid Mech. 169, 1–26 (1986)
Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, Evolution Problems I, vol. 5. Springer, New York (2000)
Dione, I., Tibirna, C., Urquiza, J.M.: Stokes equations with penalized slip boundary conditions. Int. J. Comput. Fluid Dyn. 27, 283–296 (2013)
Gazzola, F., Grunau, H.C., Sweers, G.: Polyharmonic Boundary Value Problems. Springer, New York (2010)
Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations, theory and algorithms. In: Springer Series in Computational Mathematics, vol. 5 (1986)
Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988)
Kistler, S.F., Scriven, L.E.: Coating flow theory by finite element and asymptotic analysis of the Navier–Stokes system. Int. J. Numer. Methods Fluids 4, 207–229 (1984)
Knobloch, P.: Variational crimes in finite element discretization of 3D Stokes equation with nonstandard boundary conditions. East–West J. Numer. Math. 7, 133–158 (1999)
Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23, 562–580 (1986)
Maury, B.: Numerical analysis of a finite element/volume penalty method. SIAM J. Numer. Anal. 47, 1126–1148 (2009)
Mohammadi, B., Pironneau, O.: Analysis of the \(k-\epsilon \) turbulence model. Res. Appl. Math. Masson, Paris, John Wiley & Sons, Ltd., Chichester (1994)
Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.-J., Craig, V.S.J.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859–2897 (2005)
Raviart, P.-A., Thomas, J.-M.: Introduction à l’Analyse Numérique des Équations aux Dérivées Partielles, Dunod (1998)
Solonnikov, S.A., Scadilov, V.E.: On a boundary value problem for a stationary system of Navier–Stokes equations. Proc. Steklov Inst. Math. 125, 186–199 (1973)
Utku, M., Carey, G.F.: Boundary penalty techniques. Comput. Methods Appl. Mech. Eng. 30, 103–118 (1982)
Verfürth, R.: Finite element approximation of steady Navier–Stokes equations with mixed boundary condition. Modélisation Mathématique et Anal. Numérique (RAIRO) 19, 461–475 (1985)
Verfürth, R.: Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition. Numer. Math. 50, 697–721 (1987)
Verfürth, R.: Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition II. Numer. Math. 59, 615–636 (1991)
Zhong-CI, S.: On the convergence rate of the boundary penalty method. Int. J. Numer. Methods Eng. 20, 2027–2032 (1984)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
Rights and permissions
About this article
Cite this article
Dione, I., Urquiza, J.M. Penalty: finite element approximation of Stokes equations with slip boundary conditions. Numer. Math. 129, 587–610 (2015). https://doi.org/10.1007/s00211-014-0646-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-014-0646-9