Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Penalty: finite element approximation of Stokes equations with slip boundary conditions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the finite element approximation of the stationary Stokes equations with slip boundary conditions on a domain with a smooth curved boundary. The slip boundary condition is imposed weakly with the penalty method on polygonal domains approaching the smooth domain. For Taylor-Hood elements, we derive error estimates which depend on the penalty parameter \(\varepsilon \), the disctretization parameter \(h\) and the approximation error of the normal to the boundary. In particular, if in the penalty term we use the normal to the polygonal boundary, the best convergence order is \(2/3\) and it is obtained with \(\varepsilon =c \, h^{2/3}\). This convergence result shows that Babuška’s paradox associated to Stokes equations with slip boundary conditions is circumvented. A numerical example illustrates the theoretical results, notably that regularized normal approximations give better approximations and convergence orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Babuška, I.: Stabilität des Definitionsgebietes mit Rücksicht auf grundlegende Probleme der Theorie des partiellen Differentialgleichungen auch im Zusammenhang mit der Elasticitätstheorie 1, 2. Czechoslov. Math. J. 11(76–105), 165–203 (1961). (in Russian)

    Google Scholar 

  2. Babuška, I.: The theory of small changes in the domain of existence in the theory of partial differential equations and its applications. In: Differential Equations and their Applications, pp. 13–26. Academic Press, London (1963)

  3. Babuška, I.: The finite element method with penalty. Math. Comput. 27, 221–228 (1973)

  4. Bänsch, E., Deckelnick, K.: Optimal error estimates for the Stokes and Navier–Stokes equations with slip-boundary condition. Modélisation mathématique et analyse numérique (RAIRO). M2AN Math. Model. Numer. Anal. 33, 923–938 (1999)

  5. Bernardi, C.: Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26, 212–234 (1989)

    Google Scholar 

  6. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series in Computational Mathematics, vol. 15 (1991)

  7. Caglar, A., Liakos, A.: Weak imposition of boundary conditions for the Navier–Stokes equations by a penalty method. Int. J. Numer. Methods Fluids 61, 411–431 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cuvelier, C., Driessen, J.M.: Thermocapillary free boundaries in crystal growth. J. Fluid Mech. 169, 1–26 (1986)

    Article  MATH  Google Scholar 

  9. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, Evolution Problems I, vol. 5. Springer, New York (2000)

  10. Dione, I., Tibirna, C., Urquiza, J.M.: Stokes equations with penalized slip boundary conditions. Int. J. Comput. Fluid Dyn. 27, 283–296 (2013)

    Article  MathSciNet  Google Scholar 

  11. Gazzola, F., Grunau, H.C., Sweers, G.: Polyharmonic Boundary Value Problems. Springer, New York (2010)

    Book  MATH  Google Scholar 

  12. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations, theory and algorithms. In: Springer Series in Computational Mathematics, vol. 5 (1986)

  13. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988)

  14. Kistler, S.F., Scriven, L.E.: Coating flow theory by finite element and asymptotic analysis of the Navier–Stokes system. Int. J. Numer. Methods Fluids 4, 207–229 (1984)

  15. Knobloch, P.: Variational crimes in finite element discretization of 3D Stokes equation with nonstandard boundary conditions. East–West J. Numer. Math. 7, 133–158 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23, 562–580 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maury, B.: Numerical analysis of a finite element/volume penalty method. SIAM J. Numer. Anal. 47, 1126–1148 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mohammadi, B., Pironneau, O.: Analysis of the \(k-\epsilon \) turbulence model. Res. Appl. Math. Masson, Paris, John Wiley & Sons, Ltd., Chichester (1994)

  19. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.-J., Craig, V.S.J.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859–2897 (2005)

    Article  Google Scholar 

  20. Raviart, P.-A., Thomas, J.-M.: Introduction à l’Analyse Numérique des Équations aux Dérivées Partielles, Dunod (1998)

  21. Solonnikov, S.A., Scadilov, V.E.: On a boundary value problem for a stationary system of Navier–Stokes equations. Proc. Steklov Inst. Math. 125, 186–199 (1973)

    MATH  MathSciNet  Google Scholar 

  22. Utku, M., Carey, G.F.: Boundary penalty techniques. Comput. Methods Appl. Mech. Eng. 30, 103–118 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Verfürth, R.: Finite element approximation of steady Navier–Stokes equations with mixed boundary condition. Modélisation Mathématique et Anal. Numérique (RAIRO) 19, 461–475 (1985)

    MATH  Google Scholar 

  24. Verfürth, R.: Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition. Numer. Math. 50, 697–721 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Verfürth, R.: Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition II. Numer. Math. 59, 615–636 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhong-CI, S.: On the convergence rate of the boundary penalty method. Int. J. Numer. Methods Eng. 20, 2027–2032 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Urquiza.

Additional information

Research supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dione, I., Urquiza, J.M. Penalty: finite element approximation of Stokes equations with slip boundary conditions. Numer. Math. 129, 587–610 (2015). https://doi.org/10.1007/s00211-014-0646-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0646-9

Mathematics Subject Classification (2000)