Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Numerical analysis of stationary variational-hemivariational inequalities

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Variational-hemivariational inequalities refer to the inequality problems where both convex and nonconvex functions are involved. In this paper, we consider the numerical solution of a family of stationary variational-hemivariational inequalities by the finite element method. For a variational-hemivariational inequality of a general form, we prove convergence of numerical solutions. For some particular variational-hemivariational inequalities, we provide error estimates of numerical solutions, which are of optimal order for the linear finite element method under appropriate solution regularity assumptions. Numerical results are reported on solving a variational-hemivariational inequality modeling the contact between an elastic body and a foundation with the linear finite element, illustrating the theoretically predicted optimal first order convergence and providing their mechanical interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn. Springer, New York (2009)

    MATH  Google Scholar 

  2. Barboteu, M., Bartosz, K., Kalita, P.: An analytical and numerical approach to a bilateral contact problem with nonmonotone friction. Int. J. Appl. Math. Comput. Sci. 23, 263–276 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barboteu, M., Bartosz, K., Kalita, P., Ramadan, A.: Analysis of a contact problem with normal compliance, finite penetration and nonmonotone slip dependent friction. Commun. Contemp. Math. (2013). https://doi.org/10.1142/S0219199713500168

    MATH  Google Scholar 

  4. Barboteu, M., Matei, A., Sofonea, M.: Analysis of quasistatic viscoplastic contact problems with normal compliance. Q. J. Mech. Appl. Mech. 65, 555–579 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barboteu, M., Matei, A., Sofonea, M.: On the behavior of the solution of a viscoelastic contact problem. Q. Appl. Math. 72, 625–647 (2014)

    Article  MATH  Google Scholar 

  6. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  7. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic, Dordrecht (2003)

    Book  MATH  Google Scholar 

  8. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  9. Han, W., Migórski, S., Sofonea, M.: A class of variational-hemivariational inequalities with applications to frictional contact problems. SIAM J. Math. Anal. 46, 3891–3912 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, W., Sofonea, M., Barboteu, M.: Numerical analysis of elliptic hemivariational inequalities. SIAM J. Numer. Anal. 55(2), 640–663 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, vol. 30. American Mathematical Society, Providence (2002)

    Book  MATH  Google Scholar 

  12. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  13. Khenous, H.B., Laborde, P., Renard, Y.: On the discretization of contact problems in elastodynamics. Lect. Notes Appl. Comput. Mech. 27, 31–38 (2006)

    Article  MATH  Google Scholar 

  14. Khenous, H.B., Pommier, J., Renard, Y.: Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers. Appl. Numer. Math. 56, 163–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laursen, T.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)

    MATH  Google Scholar 

  16. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol. 26. Springer, New York (2013)

    MATH  Google Scholar 

  17. Migórski, S., Ochal, A., Sofonea, M.: A class of variational-hemivariational inequalities in reflexive Banach spaces. J. Elast. 127, 151–178 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, Inc., New York (1995)

    MATH  Google Scholar 

  19. Panagiotopoulos, P.D.: Nonconvex problems of semipermeable media and related topics. ZAMM Z. Angew. Math. Mech. 65, 29–36 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  21. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  22. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact, Lect. Notes Phys., vol. 655. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  23. Sofonea, M., Han, W., Migórski, S.: Numerical analysis of history-dependent variational inequalities with applications to contact problems. Eur. J. Appl. Math. 26, 427–452 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, vol. 398. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  25. Wriggers, P.: Computational Contact Mechanics. Wiley, Chichester (2002)

    MATH  Google Scholar 

  26. Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators. Springer, New York (1990)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The work of W.H. was supported by NSF under grant DMS-1521684.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Sofonea, M. & Danan, D. Numerical analysis of stationary variational-hemivariational inequalities. Numer. Math. 139, 563–592 (2018). https://doi.org/10.1007/s00211-018-0951-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0951-9

Mathematics Subject Classification