Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper develops a general framework for a posteriori error estimates in numerical approximations of the Laplace eigenvalue problem, applicable to all standard numerical methods. Guaranteed and computable upper and lower bounds on an arbitrary simple eigenvalue are given, as well as on the energy error in the approximation of the associated eigenvector. The bounds are valid under the sole condition that the approximate i-th eigenvalue lies between the exact \((i-1)\)-th and \((i+1)\)-th eigenvalue, where the relative gaps are sufficiently large. We give a practical way how to check this; the accuracy of the resulting estimates depends on these relative gaps. Our bounds feature no unknown (solution-, regularity-, or polynomial-degree-dependent) constant, are optimally convergent (efficient), and polynomial-degree robust. Under a further explicit, a posteriori, minimal resolution condition, the multiplicative constant in our estimates can be reduced by a fixed factor; moreover, when an elliptic regularity assumption on the corresponding source problem is satisfied with known constants, this multiplicative constant can be brought to the optimal value of 1 with mesh refinement. Applications of our framework to nonconforming, discontinuous Galerkin, and mixed finite element approximations of arbitrary polynomial degree are provided, along with numerical illustrations. Our key ingredients are equivalences between the i-th eigenvalue error, the associated eigenvector energy error, and the dual norm of the residual. We extend them in an appendix to the generic class of bounded-below self-adjoint operators with compact resolvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320–2341 (2005). https://doi.org/10.1137/S0036142903425112

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M.: A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45(4), 1777–1798 (2007). https://doi.org/10.1137/060665993

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Eng. 195(25–28), 3483–3503 (2006). https://doi.org/10.1016/j.cma.2005.06.023

    Article  MathSciNet  MATH  Google Scholar 

  4. Antonietti, P.F., Houston, P., Smears, I.: A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for \(hp\)-version discontinuous Galerkin methods. Int. J. Numer. Anal. Model. 13(4), 513–524 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Arbogast, T., Chen, Z.: On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comp. 64(211), 943–972 (1995). https://doi.org/10.2307/2153478

    Article  MathSciNet  MATH  Google Scholar 

  6. Armentano, M.G., Durán, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 93–101 (2004). http://etna.mcs.kent.edu/vol.17.2004/pp93-101.dir/

  7. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19(1), 7–32 (1985). https://doi.org/10.1051/m2an/1985190100071

    Article  MathSciNet  MATH  Google Scholar 

  8. Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Chapter  Google Scholar 

  9. Blechta, J., Málek, J., Vohralík, M.: Localization of the \({W}^{-1,q}\) norm for local a posteriori efficiency (2016). https://hal.inria.fr/hal-01332481. HAL Preprint 01332481, submitted for publication

  10. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010). https://doi.org/10.1017/S0962492910000012

    Article  MathSciNet  MATH  Google Scholar 

  11. Boffi, D., Brezzi, F., Gastaldi, L.: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69(229), 121–140 (2000). https://doi.org/10.1090/S0025-5718-99-01072-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are \(p\)-robust. Comput. Methods Appl. Mech. Eng. 198(13–14), 1189–1197 (2009). https://doi.org/10.1016/j.cma.2008.12.010

    Article  MathSciNet  MATH  Google Scholar 

  13. Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comp. 77(262), 651–672 (2008). https://doi.org/10.1090/S0025-5718-07-02080-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003). https://doi.org/10.1137/S0036142902401311

    Article  MathSciNet  MATH  Google Scholar 

  15. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991). https://doi.org/10.1007/978-1-4612-3172-1

    MATH  Google Scholar 

  16. Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 352(11), 941–946 (2014). https://doi.org/10.1016/j.crma.2014.09.014

    Article  MathSciNet  MATH  Google Scholar 

  17. Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations. SIAM J. Numer. Anal. 55(5), 2228–2254 (2017). https://doi.org/10.1137/15M1038633

    Article  MathSciNet  MATH  Google Scholar 

  18. Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: Guaranteed a posteriori bounds for eigenvalues and eigenvectors: multiplicities and clusters (2018). In preparation

  19. Carstensen, C., Funken, S.A.: Fully reliable localized error control in the FEM. SIAM J. Sci. Comput. 21(4), 1465–1484 (1999). https://doi.org/10.1137/S1064827597327486

    Article  MathSciNet  MATH  Google Scholar 

  20. Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comp. 83(290), 2605–2629 (2014). https://doi.org/10.1090/S0025-5718-2014-02833-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Carstensen, C., Gedicke, J., Rim, D.: Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. J. Comput. Math. 30(4), 337–353 (2012). https://doi.org/10.4208/jcm.1108-m3677

    Article  MathSciNet  MATH  Google Scholar 

  22. Carstensen, C., Merdon, C.: Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem. J. Comput. Appl. Math. 249, 74–94 (2013). https://doi.org/10.1016/j.cam.2012.12.021

    Article  MathSciNet  MATH  Google Scholar 

  23. Ciarlet Jr., P., Vohralík, M.: Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients. M2AN Math. Model. Numer. Anal. (2018). https://doi.org/10.1051/m2an/2018034

  24. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, vol. 4. North-Holland, Amsterdam (1978)

    Google Scholar 

  25. Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010). https://doi.org/10.1007/s00209-009-0517-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Dari, E.A., Durán, R.G., Padra, C.: A posteriori error estimates for non-conforming approximation of eigenvalue problems. Appl. Numer. Math. 62(5), 580–591 (2012). https://doi.org/10.1016/j.apnum.2012.01.005

    Article  MathSciNet  MATH  Google Scholar 

  27. Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. Part I. SIAM J. Numer. Anal. 46(6), 3006–3031 (2008). https://doi.org/10.1137/070698786

    Article  MathSciNet  MATH  Google Scholar 

  28. Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. Part III. Math. Comp. 81(279), 1289–1326 (2012). https://doi.org/10.1090/S0025-5718-2011-02536-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Destuynder, P., Métivet, B.: Explicit error bounds for a nonconforming finite element method. SIAM J. Numer. Anal. 35(5), 2099–2115 (1998). https://doi.org/10.1137/S0036142996300191

    Article  MathSciNet  MATH  Google Scholar 

  30. Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comput. 68(228), 1379–1396 (1999). https://doi.org/10.1090/S0025-5718-99-01093-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-22980-0

    Book  Google Scholar 

  32. Dolejší, V., Ern, A., Vohralík, M.: \(hp\)-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems. SIAM J. Sci. Comput. 38(5), A3220–A3246 (2016). https://doi.org/10.1137/15M1026687

    Article  MathSciNet  MATH  Google Scholar 

  33. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996). https://doi.org/10.1137/0733054

    Article  MathSciNet  MATH  Google Scholar 

  34. Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9(8), 1165–1178 (1999). https://doi.org/10.1142/S021820259900052X

    Article  MathSciNet  MATH  Google Scholar 

  35. Ern, A., Nicaise, S., Vohralík, M.: An accurate \({ H}\)(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris 345(12), 709–712 (2007). https://doi.org/10.1016/j.crma.2007.10.036

    Article  MathSciNet  MATH  Google Scholar 

  36. Ern, A., Vohralík, M.: A posteriori error estimation based on potential and flux reconstruction for the heat equation. SIAM J. Numer. Anal. 48(1), 198–223 (2010). https://doi.org/10.1137/090759008

    Article  MathSciNet  MATH  Google Scholar 

  37. Ern, A., Vohralík, M.: Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35(4), A1761–A1791 (2013). https://doi.org/10.1137/120896918

    Article  MathSciNet  MATH  Google Scholar 

  38. Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53(2), 1058–1081 (2015). https://doi.org/10.1137/130950100

    Article  MathSciNet  MATH  Google Scholar 

  39. Ern, A., Vohralík, M.: Stable broken \(H^1\) and \({H}\)(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions (2016). https://hal.inria.fr/hal-01422204. HAL Preprint 01422204, submitted for publication

  40. Giani, S., Hall, E.J.C.: An a posteriori error estimator for \(hp\)-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems. Math. Models Methods Appl. Sci. 22(10), 1250030 (2012). https://doi.org/10.1142/S0218202512500303

    Article  MathSciNet  MATH  Google Scholar 

  41. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)

    MATH  Google Scholar 

  42. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012). https://doi.org/10.1515/jnum-2012-0013

    Article  MathSciNet  MATH  Google Scholar 

  43. Hecht, F., Pironneau, O., Morice, J., Le Hyaric, A., Ohtsuka, K.: FreeFem++. Tech. rep., Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, http://www.freefem.org/ff++ (2012)

  44. Helffer, B.: Spectral Theory and its Applications, Cambridge Studies in Advanced Mathematics, vol. 139. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  45. Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61(1), 196–221 (2014). https://doi.org/10.1007/s10915-014-9821-5

    Article  MathSciNet  MATH  Google Scholar 

  46. Hu, J., Huang, Y., Shen, Q.: The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators. J. Sci. Comput. 58(3), 574–591 (2014). https://doi.org/10.1007/s10915-013-9744-6

    Article  MathSciNet  MATH  Google Scholar 

  47. Jia, S., Chen, H., Xie, H.: A posteriori error estimator for eigenvalue problems by mixed finite element method. Sci. China Math. 56(5), 887–900 (2013). https://doi.org/10.1007/s11425-013-4614-0

    Article  MathSciNet  MATH  Google Scholar 

  48. Kim, K.Y.: A posteriori error analysis for locally conservative mixed methods. Math. Comp. 76(257), 43–66 (2007). https://doi.org/10.1090/S0025-5718-06-01903-X

    Article  MathSciNet  MATH  Google Scholar 

  49. Kim, K.Y.: A posteriori error estimators for locally conservative methods of nonlinear elliptic problems. Appl. Numer. Math. 57(9), 1065–1080 (2007). https://doi.org/10.1016/j.apnum.2006.09.010

    Article  MathSciNet  MATH  Google Scholar 

  50. Ladevèze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20(3), 485–509 (1983)

    Article  MathSciNet  Google Scholar 

  51. Liu, X.: A framework of verified eigenvalue bounds for self-adjoint differential operators. Appl. Math. Comput. 267, 341–355 (2015). https://doi.org/10.1016/j.amc.2015.03.048

    Article  MathSciNet  Google Scholar 

  52. Liu, X., Kikuchi, F.: Analysis and estimation of error constants for \(P_0\) and \(P_1\) interpolations over triangular finite elements. J. Math. Sci. Univ. Tokyo 17(1), 27–78 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Luo, F., Lin, Q., Xie, H.: Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods. Sci. China Math. 55(5), 1069–1082 (2012). https://doi.org/10.1007/s11425-012-4382-2

    Article  MathSciNet  MATH  Google Scholar 

  54. Mao, S., Shi, Zc: Explicit error estimates for mixed and nonconforming finite elements. J. Comput. Math. 27(4), 425–440 (2009). https://doi.org/10.4208/jcm.2009.27.4.011

    Article  MathSciNet  MATH  Google Scholar 

  55. Mehrmann, V., Miedlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra Appl. 18(3), 387–409 (2011). https://doi.org/10.1002/nla.733

    Article  MathSciNet  MATH  Google Scholar 

  56. Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36(154), 427–453 (1981). https://doi.org/10.2307/2007651

    Article  MathSciNet  MATH  Google Scholar 

  57. Papež, J., Strakoš, Z., Vohralík, M.: Estimating and localizing the algebraic and total numerical errors using flux reconstructions. Numer. Math. 138(3), 681–721 (2018). https://doi.org/10.1007/s00211-017-0915-5

    Article  MathSciNet  MATH  Google Scholar 

  58. Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Q. Appl. Math. 5, 241–269 (1947)

    Article  MathSciNet  Google Scholar 

  59. Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Handbook of Numerical Analysis, Vol. II, pp. 523–639. North-Holland, Amsterdam (1991)

    Chapter  Google Scholar 

  60. Trefethen, L.N., Betcke, T.: Computed eigenmodes of planar regions. In: Recent advances in differential equations and mathematical physics, Contemp. Math., vol. 412, pp. 297–314. Am. Math. Soc., Providence, RI (2006). https://doi.org/10.1090/conm/412/07783

  61. Vohralík, M.: On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space \(H^1\). Numer. Funct. Anal. Optim. 26(7–8), 925–952 (2005). https://doi.org/10.1080/01630560500444533

    Article  MathSciNet  MATH  Google Scholar 

  62. Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations. SIAM J. Numer. Anal. 45(4), 1570–1599 (2007). https://doi.org/10.1137/060653184

    Article  MathSciNet  MATH  Google Scholar 

  63. Yang, Y., Han, J., Bi, H., Yu, Y.: The lower/upper bound property of the Crouzeix–Raviart element eigenvalues on adaptive meshes. J. Sci. Comput. 62(1), 284–299 (2015). https://doi.org/10.1007/s10915-014-9855-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Frédéric Hecht (Laboratoire Jacques-Louis Lions, Sorbonne Université) for his kind help with our higher-order implementation in the FreeFem++ code [42, 43].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vohralík.

Additional information

This work was supported by the ANR project MANIF “Mathematical and numerical issues in first-principle molecular simulation”. Part of this work has been supported from French state funds managed by the CalSimLab LABEX and the ANR within the Investissements d’Avenir program (reference ANR-11-LABX-0037-01). The last author has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 647134 GATIPOR).

Appendices

Appendix

The current analysis was presented for the Laplace operator of (1.1). The generic equivalences can, however, be extended to a larger class of operators that we show in part A of this appendix, for a conforming approximation. We next complement in part B the estimate of Theorem 2 by a further possible improvement of the first eigenvalue upper bound.

Appendix A: Extension to a generic operator

We formulate here the results of [17, Theorems 3.4 and 3.5] for conforming approximations and any bounded-below self-adjoint operator with compact resolvent, see, e.g., Helffer [44]. This comprises for example the operator \(A {:}{=}-\varDelta +w\) with domain \(D(A){:}{=}\{v \in H^1_0(\varOmega ); \varDelta v \in L^2(\varOmega )\}\), which is self-adjoint on \(L^2(\varOmega )\) whenever \(w \in L^\infty (\varOmega )\). It appears that only the operator considered (\(-\varDelta \)) and the norms (\({\Vert }\cdot {\Vert }, {\Vert }\nabla \cdot {\Vert }\), and \({\Vert }\cdot {\Vert }_{-1}\)) need to be changed.

Let \({\mathcal {H}}\) be a separable Hilbert space endowed with a scalar product denoted by \((\cdot , \cdot )_{{\mathcal {H}}}\). Now let A be a bounded-below self-adjoint operator on \({\mathcal {H}}\) with domain D(A) and compact resolvent. There exists a non-decreasing sequence of real numbers \((\lambda _k)_{k \ge 1}\) such that \(\lambda _k \rightarrow \infty \) and an orthonormal basis \((u_k)_{k \ge 1}\) of \({\mathcal {H}}\) consisting of vectors of D(A) such that

$$\begin{aligned} \forall k \ge 1, \quad A \, u_k = \lambda _k u_k. \end{aligned}$$

Making the additional assumption that the k-th eigenvalue of A is simple, that is \(\lambda _{k-1}<\lambda _k<\lambda _{k+1}\), the k-th eigenvector is unique up to the sign. Up to shifting the operator A by a constant \(c\in {\mathbb {R}}^+\) such that \(c+A\) is a positive definite operator, we can suppose that A is a positive definite operator, in which case \((\lambda _k)_{k \ge 1}\) is a sequence of positive numbers. This enables to define an operator \(A^\frac{1}{2}\) analogous to the operator \(|\nabla |\) in the previous case (recall that \({\Vert }|\nabla v|{\Vert } = {\Vert }\nabla v{\Vert }\) for \(v \in H^1(\varOmega )\)) by its domain

$$\begin{aligned} D(A^\frac{1}{2}) {:}{=}\left\{ v\in {\mathcal {H}}; \quad \sum _{k \ge 1} \lambda _k |(v,u_k)_{{\mathcal {H}}}|^2 < +\infty \right\} \end{aligned}$$

and its expression

$$\begin{aligned} A^\frac{1}{2}: v\in D(A^\frac{1}{2}) \mapsto \sum _{k \ge 1} \sqrt{\lambda _k} (v, u_k)_{{\mathcal {H}}} u_k. \end{aligned}$$

Replace now \(-\varDelta \) by A; for the norms, the scalar product \((\cdot , \cdot )_{{\mathcal {H}}}\) of the Hilbert space \({\mathcal {H}}\) substitutes the \(L^2\) scalar product \((\cdot , \cdot )\), and naturally the norm of \({\Vert }\cdot {\Vert }_{{\mathcal {H}}}\) replaces the \(L^2\)-norm \({\Vert }\cdot {\Vert }\). The energy norm \({\Vert }\nabla \cdot {\Vert }\) is changed into \({\Vert }A^\frac{1}{2} \cdot {\Vert }_{{\mathcal {H}}}\), and the duality pairing becomes \(\langle \cdot , \cdot \rangle _{D(A^\frac{1}{2})', D(A^\frac{1}{2})}\).

Let \((w_i,\lambda _{ih}) \in D(A^\frac{1}{2}) \times \mathbb {R}^+\) with \({\Vert }w_i{\Vert }_{{\mathcal {H}}}=1\) and \((w_i,\chi _i)_{{\mathcal {H}}} > 0\) be given, for \(\chi _i \in {\mathcal {H}}\), \(i \ge 1\) fixed. Its residual \({\text {Res}}_{\theta }(w_i,\lambda _{ih})\in D(A^\frac{1}{2})'\) is now defined by

$$\begin{aligned} \langle {\text {Res}}_{\theta }(w_i,\lambda _{ih}), v\rangle _{D(A^\frac{1}{2})',D(A^\frac{1}{2})} {:}{=}\lambda _{ih}(w_i, v)_{{\mathcal {H}}} - (A^\frac{1}{2} w_i, A^\frac{1}{2} v)_{{\mathcal {H}}} \qquad \forall v \in D(A^\frac{1}{2}), \end{aligned}$$

with the dual norm

$$\begin{aligned} {\Vert }{\text {Res}}_{\theta }(w_i,\lambda _{ih}){\Vert }_{D(A^\frac{1}{2})'} {:}{=}\sup _{v \in D(A^\frac{1}{2}), \, {\Vert }A^\frac{1}{2} v{\Vert }_{{\mathcal {H}}} = 1} \langle {\text {Res}}_{\theta }(w_i,\lambda _{ih}), v\rangle _{D(A^\frac{1}{2})',D(A^\frac{1}{2})}. \end{aligned}$$

The Riesz representation of the residual is given by

Let

$$\begin{aligned} \lambda _{i-1}< \lambda _{ih}\quad \text { when } i>1, \quad \lambda _{ih}< \lambda _{i+1}, \end{aligned}$$
(A.1)

and

(A.2)

where

$$\begin{aligned} C_{ih} {:}{=}\min \left\{ \left( 1 - \frac{\lambda _{ih}}{\lambda _{i-1}}\right) ^2, \left( 1 - \frac{\lambda _{ih}}{\lambda _{i+1}}\right) ^2 \right\} . \end{aligned}$$

The generalizations of [17, Theorems 3.4 and 3.5] then read:

Theorem 5

(Eigenvalue bounds) Let \((w_i,\lambda _{ih}) \in D(A^\frac{1}{2}) \times \mathbb {R}^+\) with \({\Vert }w_i{\Vert }_{{\mathcal {H}}}=1\) and \((w_i,\chi _i)_{{\mathcal {H}}} > 0\), \(i \ge 1\). Let assumptions (A.1) and (A.2) be satisfied. Then

$$\begin{aligned} {\Vert }A^\frac{1}{2}(u_i- w_i){\Vert }^2_{{\mathcal {H}}} - \lambda _i\alpha _{ih}^2 \le {\Vert }A^\frac{1}{2}w_i{\Vert }^2_{{\mathcal {H}}} - \lambda _i\le {\Vert }A^\frac{1}{2}(u_i- w_i){\Vert }^2_{{\mathcal {H}}}. \end{aligned}$$
(A.3a)

If, moreover \(\alpha _{1h} \le \sqrt{2}\), then, for \(i=1\),

$$\begin{aligned} {\frac{1}{2}}\left( 1-\frac{\lambda _1}{\lambda _2}\right) \left( 1-\frac{\alpha _{1h}^2}{4}\right) {\Vert }A^\frac{1}{2}(u_1- w_1){\Vert }^2_{{\mathcal {H}}} \le {\Vert }A^\frac{1}{2}w_1{\Vert }^2_{{\mathcal {H}}} - \lambda _1. \end{aligned}$$
(A.3b)

Let

$$\begin{aligned} {\overline{C}}_{ih} {:}{=}1 \text { if } i=1, \quad {\overline{C}}_{ih} {:}{=}\max \left\{ \left( \frac{\lambda _{ih}}{\lambda _1}- 1\right) ^2, 1\right\} \text{ if } i>1 \end{aligned}$$

and

$$\begin{aligned} \gamma _{ih} {:}{=}{\left\{ \begin{array}{ll} {\Vert }A^\frac{1}{2}(u_i- w_i){\Vert }^2_{{\mathcal {H}}} &{} \text {if } \lambda _i\le {\Vert }A^\frac{1}{2} w_i{\Vert }^2_{{\mathcal {H}}} \text { is known to hold, }\\ \max \{{\Vert }A^\frac{1}{2}(u_i- w_i){\Vert }^2_{{\mathcal {H}}}, \lambda _i\alpha _{ih}^2\} &{} \text {otherwise.} \end{array}\right. } \end{aligned}$$
(A.4)

Then we also have:

Theorem 6

(Eigenvector bounds) Let the assumptions of Theorem 5 be satisfied. Then

(A.5a)
(A.5b)

If, moreover \(\alpha _{ih}^2 \le 2 \frac{\lambda _1}{\lambda _i}\), then

Appendix B: Further improvement of the first eigenvalue upper bound

In [17, Theorem 5.2], a further improvement of the eigenvalue upper bounds of type of Theorem 2 was possible. We now extend it to the present setting, for the first eigenvalue.

We first need to generalize the conforming local residual lifting from [17, Sect. 4.3] to the present setting. Let for each vertex \({\mathbf{a }}\in {\mathcal {V}}_h\), \(X_h^{\mathbf{a }}\) be an arbitrary finite-dimensional subspace of the space \(H^1_*({\omega _{\mathbf{a }}})\) defined in (4.1). Typically, \(X_h^{\mathbf{a }}{:}{=}{\mathbb {P}}_{p+1}({\mathcal {T}}_{\mathbf{a }}) \cap H^1_*({\omega _{\mathbf{a }}})\), similarly as for \(W_h^{\mathbf{a }}\) in Sect. 3.2. We will now solve homogeneous local Neumann (Neumann–Dirichlet close to the boundary) problems on the patches \({\omega _{\mathbf{a }}}\) via conforming primal counterparts of problems (3.3a):

Definition 4

(Conforming local Neumann problems) For each \({\mathbf{a }}\in {\mathcal {V}}_h\), define \(r_{1h}^{\mathbf{a }}\in X_h^{\mathbf{a }}\) by

(B.1)

Then set

$$\begin{aligned} r_{1h} {:}{=}\sum _{{\mathbf{a }}\in {\mathcal {V}}_h} \psi _{\mathbf{a }}r_{1h}^{\mathbf{a }}\in V. \end{aligned}$$

The functions \(r_{1h}^{\mathbf{a }}\) are discrete Riesz representations of the local residual of the pair \((s_{1h}, \lambda _{1h})\) with hat-weighted test functions. Note that the right-hand side in (B.1) does not necessarily satisfy the usually required Neumann compatibility condition \((\psi _{\mathbf{a }}\lambda _{1h}s_{1h}- \nabla s_{1h}{\cdot }\nabla \psi _{\mathbf{a }}, 1)_{\omega _{\mathbf{a }}}= 0\) for \({\mathbf{a }}\in {\mathcal {V}}^{{\text {int}}}_h\), so that (B.1) cannot hold for a constant function \(v_h=1\) on \({\omega _{\mathbf{a }}}\). Assumption 1 is in particular not required for \(s_{1h}\); this does not influence the existence and uniqueness of \(r_{1h}^{\mathbf{a }}\) (the system matrix in (B.1) is regular). Note also that \(r_{1h}^{\mathbf{a }}\not \in V\) (when extended by zero outside of \({\omega _{\mathbf{a }}}\)) but \(\psi _{\mathbf{a }}r_{1h}^{\mathbf{a }}\in H^1_0({\omega _{\mathbf{a }}})\), whence the sum \(r_{1h}\) belongs to V. For this construction, we have:

Lemma 1

(Lower dual residual bound) Let \((u_{1h},\lambda _{1h}) \in {\mathbb {P}}_p({\mathcal {T}}_h) \times \mathbb {R}^+\) be arbitrary. Construct \(s_{1h}\) by Definition 3 and \(r_{1h}\) by Definition 4. Then

Proof

The proof is trivial from (2.7b) and from the fact that \(r_{1h} \in V\) for Definition 4. Importantly, this bound is positive, see [57, proof of Theorem 2]. \(\square \)

Equipped with these tools, we can now hopefully improve the upper bound (6.15) in Theorem 2 (we actually only mimic the Case B of Theorem 1, the other cases can be treated similarly).

Proposition 2

(Possible improvement of the first eigenvalue upper bound) Let \({\underline{\lambda }}_1, {\underline{\lambda }}_2\) be as in Theorem 1. Let \((u_{1h},\lambda _{1h}) \in {\mathbb {P}}_p({\mathcal {T}}_h) \times \mathbb {R}^+\), \(p \ge 1\), be arbitrary. Let \(s_{1h}\) be constructed following Definition 3 and \(r_{1h}\) following Definition 4. Let \((s_{1h},\chi _1)>0\) and

$$\begin{aligned} {\overline{\alpha }}_{1h} {:}{=}{}&\sqrt{2} \left( 1 - \frac{\lambda _{1h}}{{\underline{\lambda }}_2}\right) ^{-1} {\underline{\lambda }}_2^{\!\!{-1/2}} \frac{1}{{\Vert }s_{1h}{\Vert }}\left( \frac{\lambda _{1h}}{\sqrt{{\underline{\lambda }}_1}} {\Vert }u_{1h}-s_{1h}{\Vert } + {\Vert }\nabla s_{1h}+ {{\varvec{\sigma }}}_{1h}{\Vert }\right) \\ \le {}&\min \left\{ \sqrt{2}, {\Vert }\chi _1{\Vert }^{-1} ({\tilde{s}}_{1h},\chi _1)\right\} , \end{aligned}$$

with \({\tilde{s}}_{1h}{:}{=}\frac{s_{1h}}{{\Vert }s_{1h}{\Vert }}\). Then

$$\begin{aligned} \lambda _1\le {\Vert }\nabla {\tilde{s}}_{1h}{\Vert }^2 - {{\tilde{\eta }}}_1, \end{aligned}$$

where

Proof

Note first that all the assumptions of [17, Theorems 3.4 and 3.5] are satisfied. We start by the second bound in [17, Theorem 3.4] which immediately implies, using \({\underline{\lambda }}_1\le \lambda _1\), \({\underline{\lambda }}_2\le \lambda _2\), and ,

Similarly, the second bound in [17, Theorem 3.5] now takes the form

Denote , , as well as . Combined with Lemma 1 and \(0 < {\underline{\lambda }}_1\le \lambda _1\), this last inequality implies

$$\begin{aligned} e_h^2 + e_h\left( {\underline{\lambda }}_1+ 2 l_h\right) - \left( {\underline{\lambda }}_1R_h - l_h^2\right) \ge 0. \end{aligned}$$

Note that the discriminant of this quadratic inequality is the term \(d_h\) and that it is non-negative. Thus

$$\begin{aligned} e_h \ge \frac{-\left( {\underline{\lambda }}_1+ 2 l_h\right) + \sqrt{d_h}}{2} \end{aligned}$$

and the desired bound follows. Note finally that for this estimate to actually improve on (6.15), \({{\tilde{\eta }}}_1\) needs to be positive, which follows when \({\underline{\lambda }}_1R_h > l_h^2\) and \({\Vert }\nabla {\tilde{s}}_{1h}{\Vert }^2 < {\underline{\lambda }}_2\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cancès, E., Dusson, G., Maday, Y. et al. Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework. Numer. Math. 140, 1033–1079 (2018). https://doi.org/10.1007/s00211-018-0984-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0984-0

Mathematics Subject Classification