Abstract
This paper develops a general framework for a posteriori error estimates in numerical approximations of the Laplace eigenvalue problem, applicable to all standard numerical methods. Guaranteed and computable upper and lower bounds on an arbitrary simple eigenvalue are given, as well as on the energy error in the approximation of the associated eigenvector. The bounds are valid under the sole condition that the approximate i-th eigenvalue lies between the exact \((i-1)\)-th and \((i+1)\)-th eigenvalue, where the relative gaps are sufficiently large. We give a practical way how to check this; the accuracy of the resulting estimates depends on these relative gaps. Our bounds feature no unknown (solution-, regularity-, or polynomial-degree-dependent) constant, are optimally convergent (efficient), and polynomial-degree robust. Under a further explicit, a posteriori, minimal resolution condition, the multiplicative constant in our estimates can be reduced by a fixed factor; moreover, when an elliptic regularity assumption on the corresponding source problem is satisfied with known constants, this multiplicative constant can be brought to the optimal value of 1 with mesh refinement. Applications of our framework to nonconforming, discontinuous Galerkin, and mixed finite element approximations of arbitrary polynomial degree are provided, along with numerical illustrations. Our key ingredients are equivalences between the i-th eigenvalue error, the associated eigenvector energy error, and the dual norm of the residual. We extend them in an appendix to the generic class of bounded-below self-adjoint operators with compact resolvent.
Similar content being viewed by others
References
Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320–2341 (2005). https://doi.org/10.1137/S0036142903425112
Ainsworth, M.: A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45(4), 1777–1798 (2007). https://doi.org/10.1137/060665993
Antonietti, P.F., Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Eng. 195(25–28), 3483–3503 (2006). https://doi.org/10.1016/j.cma.2005.06.023
Antonietti, P.F., Houston, P., Smears, I.: A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for \(hp\)-version discontinuous Galerkin methods. Int. J. Numer. Anal. Model. 13(4), 513–524 (2016)
Arbogast, T., Chen, Z.: On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comp. 64(211), 943–972 (1995). https://doi.org/10.2307/2153478
Armentano, M.G., Durán, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 93–101 (2004). http://etna.mcs.kent.edu/vol.17.2004/pp93-101.dir/
Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19(1), 7–32 (1985). https://doi.org/10.1051/m2an/1985190100071
Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, Vol. II, pp. 641–787. North-Holland, Amsterdam (1991)
Blechta, J., Málek, J., Vohralík, M.: Localization of the \({W}^{-1,q}\) norm for local a posteriori efficiency (2016). https://hal.inria.fr/hal-01332481. HAL Preprint 01332481, submitted for publication
Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010). https://doi.org/10.1017/S0962492910000012
Boffi, D., Brezzi, F., Gastaldi, L.: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69(229), 121–140 (2000). https://doi.org/10.1090/S0025-5718-99-01072-8
Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are \(p\)-robust. Comput. Methods Appl. Mech. Eng. 198(13–14), 1189–1197 (2009). https://doi.org/10.1016/j.cma.2008.12.010
Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comp. 77(262), 651–672 (2008). https://doi.org/10.1090/S0025-5718-07-02080-7
Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003). https://doi.org/10.1137/S0036142902401311
Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991). https://doi.org/10.1007/978-1-4612-3172-1
Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 352(11), 941–946 (2014). https://doi.org/10.1016/j.crma.2014.09.014
Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations. SIAM J. Numer. Anal. 55(5), 2228–2254 (2017). https://doi.org/10.1137/15M1038633
Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: Guaranteed a posteriori bounds for eigenvalues and eigenvectors: multiplicities and clusters (2018). In preparation
Carstensen, C., Funken, S.A.: Fully reliable localized error control in the FEM. SIAM J. Sci. Comput. 21(4), 1465–1484 (1999). https://doi.org/10.1137/S1064827597327486
Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comp. 83(290), 2605–2629 (2014). https://doi.org/10.1090/S0025-5718-2014-02833-0
Carstensen, C., Gedicke, J., Rim, D.: Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. J. Comput. Math. 30(4), 337–353 (2012). https://doi.org/10.4208/jcm.1108-m3677
Carstensen, C., Merdon, C.: Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem. J. Comput. Appl. Math. 249, 74–94 (2013). https://doi.org/10.1016/j.cam.2012.12.021
Ciarlet Jr., P., Vohralík, M.: Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients. M2AN Math. Model. Numer. Anal. (2018). https://doi.org/10.1051/m2an/2018034
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, vol. 4. North-Holland, Amsterdam (1978)
Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010). https://doi.org/10.1007/s00209-009-0517-8
Dari, E.A., Durán, R.G., Padra, C.: A posteriori error estimates for non-conforming approximation of eigenvalue problems. Appl. Numer. Math. 62(5), 580–591 (2012). https://doi.org/10.1016/j.apnum.2012.01.005
Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. Part I. SIAM J. Numer. Anal. 46(6), 3006–3031 (2008). https://doi.org/10.1137/070698786
Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. Part III. Math. Comp. 81(279), 1289–1326 (2012). https://doi.org/10.1090/S0025-5718-2011-02536-6
Destuynder, P., Métivet, B.: Explicit error bounds for a nonconforming finite element method. SIAM J. Numer. Anal. 35(5), 2099–2115 (1998). https://doi.org/10.1137/S0036142996300191
Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comput. 68(228), 1379–1396 (1999). https://doi.org/10.1090/S0025-5718-99-01093-5
Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-22980-0
Dolejší, V., Ern, A., Vohralík, M.: \(hp\)-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems. SIAM J. Sci. Comput. 38(5), A3220–A3246 (2016). https://doi.org/10.1137/15M1026687
Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996). https://doi.org/10.1137/0733054
Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9(8), 1165–1178 (1999). https://doi.org/10.1142/S021820259900052X
Ern, A., Nicaise, S., Vohralík, M.: An accurate \({ H}\)(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris 345(12), 709–712 (2007). https://doi.org/10.1016/j.crma.2007.10.036
Ern, A., Vohralík, M.: A posteriori error estimation based on potential and flux reconstruction for the heat equation. SIAM J. Numer. Anal. 48(1), 198–223 (2010). https://doi.org/10.1137/090759008
Ern, A., Vohralík, M.: Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35(4), A1761–A1791 (2013). https://doi.org/10.1137/120896918
Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53(2), 1058–1081 (2015). https://doi.org/10.1137/130950100
Ern, A., Vohralík, M.: Stable broken \(H^1\) and \({H}\)(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions (2016). https://hal.inria.fr/hal-01422204. HAL Preprint 01422204, submitted for publication
Giani, S., Hall, E.J.C.: An a posteriori error estimator for \(hp\)-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems. Math. Models Methods Appl. Sci. 22(10), 1250030 (2012). https://doi.org/10.1142/S0218202512500303
Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)
Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012). https://doi.org/10.1515/jnum-2012-0013
Hecht, F., Pironneau, O., Morice, J., Le Hyaric, A., Ohtsuka, K.: FreeFem++. Tech. rep., Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, http://www.freefem.org/ff++ (2012)
Helffer, B.: Spectral Theory and its Applications, Cambridge Studies in Advanced Mathematics, vol. 139. Cambridge University Press, Cambridge (2013)
Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61(1), 196–221 (2014). https://doi.org/10.1007/s10915-014-9821-5
Hu, J., Huang, Y., Shen, Q.: The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators. J. Sci. Comput. 58(3), 574–591 (2014). https://doi.org/10.1007/s10915-013-9744-6
Jia, S., Chen, H., Xie, H.: A posteriori error estimator for eigenvalue problems by mixed finite element method. Sci. China Math. 56(5), 887–900 (2013). https://doi.org/10.1007/s11425-013-4614-0
Kim, K.Y.: A posteriori error analysis for locally conservative mixed methods. Math. Comp. 76(257), 43–66 (2007). https://doi.org/10.1090/S0025-5718-06-01903-X
Kim, K.Y.: A posteriori error estimators for locally conservative methods of nonlinear elliptic problems. Appl. Numer. Math. 57(9), 1065–1080 (2007). https://doi.org/10.1016/j.apnum.2006.09.010
Ladevèze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20(3), 485–509 (1983)
Liu, X.: A framework of verified eigenvalue bounds for self-adjoint differential operators. Appl. Math. Comput. 267, 341–355 (2015). https://doi.org/10.1016/j.amc.2015.03.048
Liu, X., Kikuchi, F.: Analysis and estimation of error constants for \(P_0\) and \(P_1\) interpolations over triangular finite elements. J. Math. Sci. Univ. Tokyo 17(1), 27–78 (2010)
Luo, F., Lin, Q., Xie, H.: Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods. Sci. China Math. 55(5), 1069–1082 (2012). https://doi.org/10.1007/s11425-012-4382-2
Mao, S., Shi, Zc: Explicit error estimates for mixed and nonconforming finite elements. J. Comput. Math. 27(4), 425–440 (2009). https://doi.org/10.4208/jcm.2009.27.4.011
Mehrmann, V., Miedlar, A.: Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations. Numer. Linear Algebra Appl. 18(3), 387–409 (2011). https://doi.org/10.1002/nla.733
Mercier, B., Osborn, J., Rappaz, J., Raviart, P.A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36(154), 427–453 (1981). https://doi.org/10.2307/2007651
Papež, J., Strakoš, Z., Vohralík, M.: Estimating and localizing the algebraic and total numerical errors using flux reconstructions. Numer. Math. 138(3), 681–721 (2018). https://doi.org/10.1007/s00211-017-0915-5
Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Q. Appl. Math. 5, 241–269 (1947)
Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Handbook of Numerical Analysis, Vol. II, pp. 523–639. North-Holland, Amsterdam (1991)
Trefethen, L.N., Betcke, T.: Computed eigenmodes of planar regions. In: Recent advances in differential equations and mathematical physics, Contemp. Math., vol. 412, pp. 297–314. Am. Math. Soc., Providence, RI (2006). https://doi.org/10.1090/conm/412/07783
Vohralík, M.: On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space \(H^1\). Numer. Funct. Anal. Optim. 26(7–8), 925–952 (2005). https://doi.org/10.1080/01630560500444533
Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations. SIAM J. Numer. Anal. 45(4), 1570–1599 (2007). https://doi.org/10.1137/060653184
Yang, Y., Han, J., Bi, H., Yu, Y.: The lower/upper bound property of the Crouzeix–Raviart element eigenvalues on adaptive meshes. J. Sci. Comput. 62(1), 284–299 (2015). https://doi.org/10.1007/s10915-014-9855-8
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the ANR project MANIF “Mathematical and numerical issues in first-principle molecular simulation”. Part of this work has been supported from French state funds managed by the CalSimLab LABEX and the ANR within the Investissements d’Avenir program (reference ANR-11-LABX-0037-01). The last author has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 647134 GATIPOR).
Appendices
Appendix
The current analysis was presented for the Laplace operator of (1.1). The generic equivalences can, however, be extended to a larger class of operators that we show in part A of this appendix, for a conforming approximation. We next complement in part B the estimate of Theorem 2 by a further possible improvement of the first eigenvalue upper bound.
Appendix A: Extension to a generic operator
We formulate here the results of [17, Theorems 3.4 and 3.5] for conforming approximations and any bounded-below self-adjoint operator with compact resolvent, see, e.g., Helffer [44]. This comprises for example the operator \(A {:}{=}-\varDelta +w\) with domain \(D(A){:}{=}\{v \in H^1_0(\varOmega ); \varDelta v \in L^2(\varOmega )\}\), which is self-adjoint on \(L^2(\varOmega )\) whenever \(w \in L^\infty (\varOmega )\). It appears that only the operator considered (\(-\varDelta \)) and the norms (\({\Vert }\cdot {\Vert }, {\Vert }\nabla \cdot {\Vert }\), and \({\Vert }\cdot {\Vert }_{-1}\)) need to be changed.
Let \({\mathcal {H}}\) be a separable Hilbert space endowed with a scalar product denoted by \((\cdot , \cdot )_{{\mathcal {H}}}\). Now let A be a bounded-below self-adjoint operator on \({\mathcal {H}}\) with domain D(A) and compact resolvent. There exists a non-decreasing sequence of real numbers \((\lambda _k)_{k \ge 1}\) such that \(\lambda _k \rightarrow \infty \) and an orthonormal basis \((u_k)_{k \ge 1}\) of \({\mathcal {H}}\) consisting of vectors of D(A) such that
Making the additional assumption that the k-th eigenvalue of A is simple, that is \(\lambda _{k-1}<\lambda _k<\lambda _{k+1}\), the k-th eigenvector is unique up to the sign. Up to shifting the operator A by a constant \(c\in {\mathbb {R}}^+\) such that \(c+A\) is a positive definite operator, we can suppose that A is a positive definite operator, in which case \((\lambda _k)_{k \ge 1}\) is a sequence of positive numbers. This enables to define an operator \(A^\frac{1}{2}\) analogous to the operator \(|\nabla |\) in the previous case (recall that \({\Vert }|\nabla v|{\Vert } = {\Vert }\nabla v{\Vert }\) for \(v \in H^1(\varOmega )\)) by its domain
and its expression
Replace now \(-\varDelta \) by A; for the norms, the scalar product \((\cdot , \cdot )_{{\mathcal {H}}}\) of the Hilbert space \({\mathcal {H}}\) substitutes the \(L^2\) scalar product \((\cdot , \cdot )\), and naturally the norm of \({\Vert }\cdot {\Vert }_{{\mathcal {H}}}\) replaces the \(L^2\)-norm \({\Vert }\cdot {\Vert }\). The energy norm \({\Vert }\nabla \cdot {\Vert }\) is changed into \({\Vert }A^\frac{1}{2} \cdot {\Vert }_{{\mathcal {H}}}\), and the duality pairing becomes \(\langle \cdot , \cdot \rangle _{D(A^\frac{1}{2})', D(A^\frac{1}{2})}\).
Let \((w_i,\lambda _{ih}) \in D(A^\frac{1}{2}) \times \mathbb {R}^+\) with \({\Vert }w_i{\Vert }_{{\mathcal {H}}}=1\) and \((w_i,\chi _i)_{{\mathcal {H}}} > 0\) be given, for \(\chi _i \in {\mathcal {H}}\), \(i \ge 1\) fixed. Its residual \({\text {Res}}_{\theta }(w_i,\lambda _{ih})\in D(A^\frac{1}{2})'\) is now defined by
with the dual norm
The Riesz representation of the residual is given by
Let
and
where
The generalizations of [17, Theorems 3.4 and 3.5] then read:
Theorem 5
(Eigenvalue bounds) Let \((w_i,\lambda _{ih}) \in D(A^\frac{1}{2}) \times \mathbb {R}^+\) with \({\Vert }w_i{\Vert }_{{\mathcal {H}}}=1\) and \((w_i,\chi _i)_{{\mathcal {H}}} > 0\), \(i \ge 1\). Let assumptions (A.1) and (A.2) be satisfied. Then
If, moreover \(\alpha _{1h} \le \sqrt{2}\), then, for \(i=1\),
Let
and
Then we also have:
Theorem 6
(Eigenvector bounds) Let the assumptions of Theorem 5 be satisfied. Then
If, moreover \(\alpha _{ih}^2 \le 2 \frac{\lambda _1}{\lambda _i}\), then
Appendix B: Further improvement of the first eigenvalue upper bound
In [17, Theorem 5.2], a further improvement of the eigenvalue upper bounds of type of Theorem 2 was possible. We now extend it to the present setting, for the first eigenvalue.
We first need to generalize the conforming local residual lifting from [17, Sect. 4.3] to the present setting. Let for each vertex \({\mathbf{a }}\in {\mathcal {V}}_h\), \(X_h^{\mathbf{a }}\) be an arbitrary finite-dimensional subspace of the space \(H^1_*({\omega _{\mathbf{a }}})\) defined in (4.1). Typically, \(X_h^{\mathbf{a }}{:}{=}{\mathbb {P}}_{p+1}({\mathcal {T}}_{\mathbf{a }}) \cap H^1_*({\omega _{\mathbf{a }}})\), similarly as for \(W_h^{\mathbf{a }}\) in Sect. 3.2. We will now solve homogeneous local Neumann (Neumann–Dirichlet close to the boundary) problems on the patches \({\omega _{\mathbf{a }}}\) via conforming primal counterparts of problems (3.3a):
Definition 4
(Conforming local Neumann problems) For each \({\mathbf{a }}\in {\mathcal {V}}_h\), define \(r_{1h}^{\mathbf{a }}\in X_h^{\mathbf{a }}\) by
Then set
The functions \(r_{1h}^{\mathbf{a }}\) are discrete Riesz representations of the local residual of the pair \((s_{1h}, \lambda _{1h})\) with hat-weighted test functions. Note that the right-hand side in (B.1) does not necessarily satisfy the usually required Neumann compatibility condition \((\psi _{\mathbf{a }}\lambda _{1h}s_{1h}- \nabla s_{1h}{\cdot }\nabla \psi _{\mathbf{a }}, 1)_{\omega _{\mathbf{a }}}= 0\) for \({\mathbf{a }}\in {\mathcal {V}}^{{\text {int}}}_h\), so that (B.1) cannot hold for a constant function \(v_h=1\) on \({\omega _{\mathbf{a }}}\). Assumption 1 is in particular not required for \(s_{1h}\); this does not influence the existence and uniqueness of \(r_{1h}^{\mathbf{a }}\) (the system matrix in (B.1) is regular). Note also that \(r_{1h}^{\mathbf{a }}\not \in V\) (when extended by zero outside of \({\omega _{\mathbf{a }}}\)) but \(\psi _{\mathbf{a }}r_{1h}^{\mathbf{a }}\in H^1_0({\omega _{\mathbf{a }}})\), whence the sum \(r_{1h}\) belongs to V. For this construction, we have:
Lemma 1
(Lower dual residual bound) Let \((u_{1h},\lambda _{1h}) \in {\mathbb {P}}_p({\mathcal {T}}_h) \times \mathbb {R}^+\) be arbitrary. Construct \(s_{1h}\) by Definition 3 and \(r_{1h}\) by Definition 4. Then
Proof
The proof is trivial from (2.7b) and from the fact that \(r_{1h} \in V\) for Definition 4. Importantly, this bound is positive, see [57, proof of Theorem 2]. \(\square \)
Equipped with these tools, we can now hopefully improve the upper bound (6.15) in Theorem 2 (we actually only mimic the Case B of Theorem 1, the other cases can be treated similarly).
Proposition 2
(Possible improvement of the first eigenvalue upper bound) Let \({\underline{\lambda }}_1, {\underline{\lambda }}_2\) be as in Theorem 1. Let \((u_{1h},\lambda _{1h}) \in {\mathbb {P}}_p({\mathcal {T}}_h) \times \mathbb {R}^+\), \(p \ge 1\), be arbitrary. Let \(s_{1h}\) be constructed following Definition 3 and \(r_{1h}\) following Definition 4. Let \((s_{1h},\chi _1)>0\) and
with \({\tilde{s}}_{1h}{:}{=}\frac{s_{1h}}{{\Vert }s_{1h}{\Vert }}\). Then
where
Proof
Note first that all the assumptions of [17, Theorems 3.4 and 3.5] are satisfied. We start by the second bound in [17, Theorem 3.4] which immediately implies, using \({\underline{\lambda }}_1\le \lambda _1\), \({\underline{\lambda }}_2\le \lambda _2\), and ,
Similarly, the second bound in [17, Theorem 3.5] now takes the form
Denote , , as well as . Combined with Lemma 1 and \(0 < {\underline{\lambda }}_1\le \lambda _1\), this last inequality implies
Note that the discriminant of this quadratic inequality is the term \(d_h\) and that it is non-negative. Thus
and the desired bound follows. Note finally that for this estimate to actually improve on (6.15), \({{\tilde{\eta }}}_1\) needs to be positive, which follows when \({\underline{\lambda }}_1R_h > l_h^2\) and \({\Vert }\nabla {\tilde{s}}_{1h}{\Vert }^2 < {\underline{\lambda }}_2\). \(\square \)
Rights and permissions
About this article
Cite this article
Cancès, E., Dusson, G., Maday, Y. et al. Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework. Numer. Math. 140, 1033–1079 (2018). https://doi.org/10.1007/s00211-018-0984-0
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-018-0984-0