Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An ultraweak formulation of the Reissner–Mindlin plate bending model and DPG approximation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We develop and analyze an ultraweak variational formulation of the Reissner–Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thickness t. We also prove weak convergence of the Reissner–Mindlin solution to the solution of the corresponding Kirchhoff–Love model when \(t\rightarrow 0\). Based on the ultraweak formulation, we introduce a discretization of the discontinuous Petrov–Galerkin type with optimal test functions (DPG) and prove its uniform quasi-optimal convergence. Our theory covers the case of non-convex polygonal plates. A numerical experiment for some smooth model solutions with fixed load confirms that our scheme is locking free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arnold, D.N., Madureira, A.L., Zhang, S.: On the range of applicability of the Reissner-Mindlin and Kirchhoff-Love plate bending models. J. Elast. 67(2002), 171–185 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Pitkäranta, J.: The plate paradox for hard and soft simple support. SIAM J. Math. Anal. 21, 551–576 (1990)

    Article  MathSciNet  Google Scholar 

  3. Beirão da Veiga, L., Mora, D., Rodríguez, R.: Numerical analysis of a locking-free mixed finite element method for a bending moment formulation of Reissner-Mindlin plate model. Numer. Methods Part. Differ. Equ. 29, 40–63 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bösing, P.R., Carstensen, C.: Weakly over-penalized discontinuous Galerkin schemes for Reissner-Mindlin plates without the shear variable. Numer. Math. 130, 395–423 (2015)

    Article  MathSciNet  Google Scholar 

  5. Braess, D., Sauter, S., Schwab, C.: On the justification of plate models. J. Elast. 103, 53–71 (2011)

    Article  MathSciNet  Google Scholar 

  6. Calo, V.M., Collier, N.O., Niemi, A.H.: Analysis of the discontinuous Petrov-Galerkin method with optimal test functions for the Reissner-Mindlin plate bending model. Comput. Math. Appl. 66, 2570–2586 (2014)

    Article  MathSciNet  Google Scholar 

  7. Carstensen, C., Demkowicz, L.F., Gopalakrishnan, J.: Breaking spaces and forms for the DPG method and applications including Maxwell equations. Comput. Math. Appl. 72, 494–522 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chapelle, D., Stenberg, R.: An optimal low-order locking-free finite element method for Reissner-Mindlin plates. Math. Models Methods Appl. Sci. 8, 407–430 (1998)

    Article  MathSciNet  Google Scholar 

  9. Demkowicz, L.F., Gopalakrishnan, J.: Analysis of the DPG method for the Poisson problem. SIAM J. Numer. Anal. 49, 1788–1809 (2011)

    Article  MathSciNet  Google Scholar 

  10. Demkowicz, L.F., Gopalakrishnan, J.: A class of discontinuous Petrov-Galerkin methods. Part II: Optimal test functions. Numer. Methods Part. Differ. Equ. 27, 70–105 (2011)

    Article  Google Scholar 

  11. Führer, T., Haberl, A., Heuer, N.: Trace operators of the bi-Laplacian and applications, IMA J. Numer. Anal. (2019). https://doi.org/10.1093/imanum/draa012

  12. Führer, T., Heuer, N.: Fully discrete DPG methods for the Kirchhoff-Love plate bending model. Comput. Methods Appl. Mech. Eng. 343, 550–571 (2019)

    Article  MathSciNet  Google Scholar 

  13. Führer, T., Heuer, N., Niemi, A.H.: An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation. Math. Comput. 88, 1587–1619 (2019)

    Article  MathSciNet  Google Scholar 

  14. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer Series in Computational Mathematics, vol. 5. Springer-Verlag, Berlin (1986)

    Book  Google Scholar 

  15. Gopalakrishnan, J., Qiu, W.: An analysis of the practical DPG method. Math. Comput. 83, 537–552 (2014)

    Article  MathSciNet  Google Scholar 

  16. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Niemi, A.H., Bramwell, J.A., Demkowicz, L.F.: Discontinuous Petrov-Galerkin method with optimal test functions for thin-body problems in solid mechanics. Comput. Methods Appl. Mech. Eng. 200, 1291–1300 (2011)

    Article  MathSciNet  Google Scholar 

  18. Schwartz, L.: Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X, Hermann, Paris (1966)

  19. Ventsel, E., Krauthammer, T.: Thin Plates and Shells. CRC Press, New York (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Heuer.

Additional information

Dedicated to our dear friend Francisco “Pancho” Javier Sayas who passed away in April 2019.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by CONICYT through FONDECYT Projects 1190009, 11170050, and by NSF through Grant DMS-1818867.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Führer, T., Heuer, N. & Sayas, FJ. An ultraweak formulation of the Reissner–Mindlin plate bending model and DPG approximation. Numer. Math. 145, 313–344 (2020). https://doi.org/10.1007/s00211-020-01116-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01116-0

Mathematics Subject Classification