Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Equation-free patch scheme for efficient computational homogenisation via self-adjoint coupling

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Equation-free macroscale modelling is a systematic and rigorous computational methodology for efficiently predicting the dynamics of a microscale complex system at a desired macroscale system level. In this scheme, a given microscale model is computed in small patches spread across the space-time domain, with patch coupling conditions bridging the unsimulated space. For accurate predictions, care must be taken in designing the patch coupling conditions. Here we construct novel coupling conditions which preserve self-adjoint symmetry, thus guaranteeing that the macroscale model maintains some important conservation laws of the original microscale model. Consistency of the patch scheme’s macroscale dynamics with the original microscale model is proved for systems in 1D and 2D space, and these proofs immediately extend to higher dimensions. Expanding from a system with a single configuration to an ensemble of configurations establishes that the proven consistency also holds for cases where the microscale periodicity does not integrally fill the patches. This new self-adjoint patch scheme provides an efficient, flexible, and accurate computational homogenisation, as demonstrated here with canonical examples in 1D and 2D space based on heterogenous diffusion, and is applicable to a wide range of multiscale scenarios of interest to scientists and engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Often \({\mathcal {L}}\) is a real matrix, and then this self-adjoint property is the usual matrix symmetry.

References

  1. Abdulle, A., Grote, M.J.: Finite element heterogeneous multiscale method for the wave equation. Multiscale Model. Simul. 9(2), 766–792 (2011). https://doi.org/10.1137/100800488

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle, A., Pouchon, T.: Effective models and numerical homogenization for wave propagation in heterogeneous media on arbitrary timescales. Found. Comput. Math. 20, 1505–1547 (2020). https://doi.org/10.1007/s10208-020-09456-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdulle, A., Engquist, W.E.B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012). https://doi.org/10.1017/S0962492912000025

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdulle, A., Arjmand, D., Paganoni, E.: A parabolic local problem with exponential decay of the resonance error for numerical homogenization. Technical report, arXiv:2001.05543, (2020)

  5. Bunder, J.E., Roberts, A.J., Kevrekidis, I.G.: Good coupling for the multiscale patch scheme on systems with microscale heterogeneity. J. Comput. Phys. 337, 154–174 (2017). https://doi.org/10.1016/j.jcp.2017.02.004

    Article  MathSciNet  MATH  Google Scholar 

  6. Bunder, J.E., Divahar, J., Kevrekidis, I.G., Mattner, T.W., Roberts, A.J.: Large-scale simulation of shallow water waves via computation only on small staggered patches. Int. J. Numer. Meth. Fluids 93(4), 953–977 (2021). https://doi.org/10.1002/fld.4915

    Article  MathSciNet  Google Scholar 

  7. Cao, M., Roberts, A.J.: Multiscale modelling couples patches of non-linear wave-like simulations. IMA J. Appl. Math. 81(2), 228–254 (2015). https://doi.org/10.1093/imamat/hxv034

    Article  MathSciNet  MATH  Google Scholar 

  8. Carr, E.J., Perré, P., Turner, I.W.: The extended distributed microstructure model for gradient-driven transport: A two-scale model for bypassing effective parameters. J. Comput. Phys. 327, 810–829 (2016). https://doi.org/10.1016/j.jcp.2016.10.004

    Article  MathSciNet  MATH  Google Scholar 

  9. Carr, J.: Applications of centre manifold theory, volume 35 of Applied Mathematical Sciences. Springer-Verlag (1982). https://doi.org/10.1007/978-1-4612-5929-9

  10. Cornaggia, R., Guzina, B.B.: Second-order homogenization of boundary and transmission conditions for one-dimensional waves in periodic media. Int. J. Solids Struct. 188–9, 88–102 (2020). https://doi.org/10.1016/j.ijsolstr.2019.09.009

    Article  Google Scholar 

  11. dell’Isola, F., Bucci, S., Battista, A.: Advanced Methods of Continuum Mechanics for Materials and Structures, chapter Against the fragmentation of knowledge: The power of multidisciplinary research for the design of metamaterials, pages 523–545. Springer, (2016). https://doi.org/10.1007/978-981-10-0959-4_28

  12. Dolbow, J., Khaleel, M.A., Mitchell, J.: Multiscale mathematics initiative: A roadmap. Report from the 3rd DoE workshop on multiscale mathematics. Technical report, Department of Energy, USA, http://www.sc.doe.gov/ascr/mics/amr, (December 2004)

  13. Dsilva, C.J., Talmon, R., Coifman, R.R., Kevrekidis, I.G.: Parsimonious representation of nonlinear dynamical systems through manifold learning: A chemotaxis case study. Appl. Comput. Harm. Anal. 44, 759–773 (2018). https://doi.org/10.1016/j.acha.2015.06.008

    Article  MathSciNet  MATH  Google Scholar 

  14. Engquist, W.E.B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: A review. Commun. Comput. Phys. 2, 367–450 (2007), http://global-sci.org/intro/article_detail/cicp/7911.html

  15. Efendiev, E., Ginting, V., Hou, T.Y.: Multiscale finite element methods for nonlinear problems and their applications. Comm. Math. Sci. 2(4), 553–589 (2004). https://doi.org/10.4310/CMS.2004.v2.n4.a2

    Article  MathSciNet  MATH  Google Scholar 

  16. Engquist, B., Souganidis, P.E.: Asymptotic and numerical homogenization. Acta Numer. 17, 147–190 (2008). https://doi.org/10.1017/S0962492906360011

    Article  MathSciNet  MATH  Google Scholar 

  17. Engquist, B., Holst, H., Runborg, O.: Multi-scale methods for wave propagation in heterogeneous media. Comm. Math. Sci. 9, 33–56 (2011). https://doi.org/10.4310/CMS.2011.v9.n1.a2

    Article  MathSciNet  MATH  Google Scholar 

  18. Gear, C.W., Li, J., Kevrekidis, I.G.: The gap-tooth method in particle simulations. Phys. Lett. A 316, 190–195 (2003). https://doi.org/10.1016/j.physleta.2003.07.004

    Article  MathSciNet  MATH  Google Scholar 

  19. Geers, M.G.D., Kouznetsova, V.G., Brekelmans, W.A.M.: Multi-scale computational homogenization: Trends and challenges. J. Comput. Appl. Math. 234(7), 2175–2182 (2010). https://doi.org/10.1016/j.cam.2009.08.077

    Article  MATH  Google Scholar 

  20. Geers, M.G.D., Kouznetsova, V.G., Matouš, K., Yvonnet, J.: Homogenization methods and multiscale modeling: Nonlinear problems. Encyclopedia of Computational Mechanics, Second Edition. Wiley, (2017). https://doi.org/10.1002/9781119176817.ecm2107

  21. Grabowski, W.W.: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci. 58(9), 978–997 (2001). https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2

  22. Grooms, I., Julien, K.: Multiscale models in geophysical fluid dynamics. Earth Space Sci. 5(11), 668–675 (2018). https://doi.org/10.1029/2018EA000439

    Article  Google Scholar 

  23. Jarrad, G.A., Roberts, A.J.: Smooth subgrid fields underpin rigorous closure in spatial discretisation of reaction-advection-diffusion PDEs. Appl. Numer. Math. 132, 91–110 (2018). https://doi.org/10.1016/j.apnum.2018.05.011

    Article  MathSciNet  MATH  Google Scholar 

  24. Kevrekidis, I.G., Samaey, G.: Equation-free multiscale computation: Algorithms and applications. Annu. Rev. Phys. Chem. 60, 321–44 (2009). https://doi.org/10.1146/annurev.physchem.59.032607.093610

    Article  Google Scholar 

  25. Kevrekidis, I.G., Gear, C.W., Hummer, G.: Equation-free: The computer-assisted analysis of complex, multiscale systems. A. I. Ch. E. J. 50, 1346–1354 (2004). https://doi.org/10.1002/aic.10106

    Article  Google Scholar 

  26. Liu, X., Furrer, D., Kosters, J., Holmes, J.: Vision 2040: A roadmap for integrated, multiscale modeling and simulation of materials and systems. NASA technical report, NASA/CR—2018-219771, (2018). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180002010.pdf

  27. Maclean, J., Bunder, J.E., Roberts, A.J.: A toolbox of equation-free functions in Matlab/Octave for efficient system level simulation. Numer. Algor. (2020). https://doi.org/10.1007/s11075-020-01027-z

  28. Maclean, J., Bunder, J.E., Roberts, A.J., Kevrekidis, I.G.: An equation free algorithm accurately simulates macroscale shocks arising from heterogeneous microscale systems. IEEE J. Multiscale Multiphys. Comput. Tech. 6, 8–15 (2021). https://doi.org/10.1109/JMMCT.2021.3054012

    Article  Google Scholar 

  29. Maier, R., Peterseim, D.: Explicit computational wave propagation in micro-heterogeneous media. BIT Numer. Math. 59(2), 443–462 (2019). https://doi.org/10.1007/s10543-018-0735-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Målqvist, A., Peterseim, D.: Computation of eigenvalues by numerical upscaling. Numer. Math. 130, 337–361 (2015). https://doi.org/10.1007/s00211-014-0665-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Natl Physical Lab. Modern Computing Methods, volume 16 of Notes on Applied Science. Her Majesty’s Stationery Office, London, 2nd edition edition, (1961)

  32. Owhadi, H.: Bayesian numerical homogenization. Multiscale Model. Simul. 13(3), 812–828 (2015). https://doi.org/10.1137/140974596

    Article  MathSciNet  MATH  Google Scholar 

  33. Peterseim, D.: Numerical homogenization beyond scale separation and periodicity. Technical report, AMSI Winter School on Computational Modeling of Heterogeneous Media (Jun. 2019)

  34. Pozharskiy, D., Wichrowski, N.J., Duncan, A.B., Pavliotis, G.A., Kevrekidis, I.G.: Manifold learning for accelerating coarse-grained optimization. J. Comput. Dyn. 7(2), 511–536 (2020). https://doi.org/10.3934/jcd.2020021

    Article  MathSciNet  MATH  Google Scholar 

  35. Roberts, A.J.: Appropriate initial conditions for asymptotic descriptions of the long term evolution of dynamical systems. ANZIAM J. 31, 48–75 (1989). https://doi.org/10.1017/S0334270000006470

    Article  MathSciNet  MATH  Google Scholar 

  36. Roberts, A.J.: Choose inter-element coupling to preserve self-adjoint dynamics in multiscale modelling and computation. Appl. Numer. Math. 60, 949–973 (2010). https://doi.org/10.1016/j.apnum.2010.06.002

    Article  MathSciNet  MATH  Google Scholar 

  37. Roberts, A.J.: Choose inter-element coupling to preserve self-adjoint dynamics in multiscale modelling and computation. Appl. Numer. Math. 60, 949–973 (2010). https://doi.org/10.1016/j.apnum.2010.06.002

    Article  MathSciNet  MATH  Google Scholar 

  38. Roberts, A.J.: Macroscale, slowly varying, models emerge from the microscale dynamics in long thin domains. IMA J. Appl. Math. 80(5), 1492–1518 (2015). https://doi.org/10.1093/imamat/hxv004

    Article  MathSciNet  MATH  Google Scholar 

  39. Roberts, A.J.: Model emergent dynamics in complex systems. SIAM, Philadelphia, (2015b). http://bookstore.siam.org/mm20/

  40. Roberts, A.J., MacKenzie, T., Bunder, J.E.: A dynamical systems approach to simulating macroscale spatial dynamics in multiple dimensions. J. Eng. Math. 86(1), 175–207 (2014). https://doi.org/10.1007/s10665-013-9653-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Roberts, A.J., Maclean, J., Bunder, J.E.: Equation-free function toolbox for Matlab/Octave. Technical report, https://github.com/uoa1184615/EquationFreeGit, (2020)

  42. Romanazzi, P., Bruna, M., Howey, D.A.: Thermal homogenisation of electrical machine windings applying the multiple-scales method. J. Heat Trans. 139, 012101 (2016). https://doi.org/10.1115/1.4034337

    Article  Google Scholar 

  43. Rüde, U., Willcox, K., McInnes, L.C., De Sterck, H.: Research and education in computational science and engineering. SIAM Rev. 60(3), 707–754 (2018). https://doi.org/10.1137/16M1096840

    Article  MathSciNet  Google Scholar 

  44. Runborg, O., Theodoropoulos, C., Kevrekidis, I.G.: Effective bifurcation analysis: A time-stepper-based approach. Nonlinearity 15, 491–511 (2002). https://doi.org/10.1088/0951-7715/15/2/314

    Article  MathSciNet  MATH  Google Scholar 

  45. Saeb, S., Steinmann, P., Javili, A.: Aspects of computational homogenization at finite deformations: A unifying review from Reuss’ to Voigt’s bound. Appl. Mech. Rev., 68(5), (2016). https://doi.org/10.1115/1.4034024

  46. Samaey, G., Kevrekidis, I.G., Roose, D.: The gap-tooth scheme for homogenization problems. Multiscale Model. Simul. 4, 278–306 (2005). https://doi.org/10.1137/030602046

    Article  MathSciNet  MATH  Google Scholar 

  47. Samaey, G., Roose, D., Kevrekidis, I.G.: Patch dynamics with buffers for homogenization problems. J. Comput Phys. 213, 264–287 (2006). https://doi.org/10.1016/j.jcp.2005.08.010

    Article  MathSciNet  MATH  Google Scholar 

  48. Sethna, J.P.: Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press, 2006. URL https://global.oup.com/academic/product/statistical-mechanics-entropy-order-parameters-and-complexity-9780198865254?lang=en&cc=us

  49. Van Kampen, N.G.: Elimination of fast variables. Phys. Rep. 124(2), 69–160 (1985). https://doi.org/10.1016/0370-1573(85)90002-X

    Article  MathSciNet  Google Scholar 

  50. Van Kampen, N.G.: Stochastic processes in physics and chemistry. Elsevier, (1992). URL https://www.elsevier.com/books/stochastic-processes-in-physics-and-chemistry/van-kampen/978-0-444-52965-7

  51. Xiu, D., Kevrekidis, I.G.: Equation-free, multiscale computation for unsteady random diffusion. Multiscale Model. Simul. 4(3), 915–935 (2005). https://doi.org/10.1137/040615006

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research was funded by the Australian Research Council under grants DP150102385 and DP200103097. The work of I.G.K. was also partially supported by the DARPA PAI program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Bunder.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Code availability

Appendix A provides computer algebra code; numerical code is available from the GitHub Equation-Free Matlab/Octave Toolbox [41]

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Macroscale homogenised 1D diffusion

A Macroscale homogenised 1D diffusion

This is computer algebra script homo1Ddiff.txt for Sect. 3.1.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunder, J.E., Kevrekidis, I.G. & Roberts, A.J. Equation-free patch scheme for efficient computational homogenisation via self-adjoint coupling. Numer. Math. 149, 229–272 (2021). https://doi.org/10.1007/s00211-021-01232-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01232-5

Mathematics Subject Classification