Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

How and why non smooth solutions of the 3D Navier–Stokes equations could possibly develop

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Fluid configurations in three-dimensions, displaying a plausible decay of regularity in a finite time, are suitably built and examined. Vortex rings are the primary ingredients in this study. The full Navier–Stokes system is converted into a 3D scalar problem, where appropriate numerical methods are implemented in order to figure out the behavior of the solutions. Further simplifications in 2D and 1D provide interesting toy problems, that may be used as a starting platform for a better understanding of blowup phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akhmetov, D.G.: Vortex Rings. Springer, New York (2009)

    Book  MATH  Google Scholar 

  2. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beirão da Veiga, H.: A new regularity class for the Navier-Stokes equations in \({ R}^n\). Chin. Ann. Math. B 16, 407–412 (1995)

    MATH  Google Scholar 

  4. Berselli, L.C.: On a regularity criterion for the solutions to the 3D Navier-Stokes equations. Differ. Integral Equ. 15, 1129–1137 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Brenner, M.P., Hormoz, S., Pumir, A.: Potential singularity mechanism for the Euler equations. Phys. Rev. Fluids 1, 084503 (2016)

    Article  Google Scholar 

  6. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system, I, Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  MATH  Google Scholar 

  8. Cannone, M., Karch, G.: Smooth or singular solutions to the Navier-Stokes system? J. Diff. Eq. 197, 247 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, C.H., Yoneda, T.: On possible isolated blow-up phenomena and regularity criterion of the 3D Navier-Stokes equation along the streamlines. MAA 19(3), 211–242 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Feerman, C.: Existence and smoothness of the Navier-Stokes equation, The millennium prize problems, pp. 57–67. Clay Math. Inst, Cambridge MA (2006)

  11. Foxall, E., Ibrahim, S., Yoneda, T.: Streamlines concentration and application to the incompressible Navier-Stokes equations. Tohuku Math. J. 65(2), 273–279 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Galaktionov, V. A.: (2009), On blow-up ’twistors’ for the Navier-Stokes equations in R3: a view from reaction-diusion theory, arXiv:0901.4286v1

  13. Giga, Y.: Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system. J. Diff. Eq. 62, 186–212 (1986)

    Article  MATH  Google Scholar 

  14. Grauer, R., Sideris, T.: Numerical computation of three dimensional incompressible ideal uids with swirl. Phys. Rev. Lett. 67, 3511–3514 (1991)

    Article  Google Scholar 

  15. Hu, B.: Blow-up theories for Semilinear Parabolic Equations. Springer, New York (2011)

    Book  MATH  Google Scholar 

  16. Karch, G., Schonbek, M.E., Schonbek, T.P.: Singularities of certain finite energy solutions to the Navier-Stokes system. Discret. Cont. Dyn. A 40(1), 189–206 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. McKeown, R., et al.: A cascade leading to the emergence of small structures in vortex ring collisions. Phys. Rev. Fluids 3, 124702 (2018)

    Article  Google Scholar 

  18. Kerr, R.M.: Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A 5, 1725 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kimura, Y., Moffatt, H.K.: Scaling properties towards vortex reconnection under the Biot-Savart law. Fluid Dyn. Res. 50, 011409 (2018)

    Article  MathSciNet  Google Scholar 

  20. Lim, T.T., Nickels, T.B.: Instability and reconnection in the head-on collision of two vortex rings. Nature 357, 225–227 (1992)

    Article  Google Scholar 

  21. Miranville, A.: (2019), The Cahn-Hilliard equation: recent advances and applications, CBMS-NSF Regional Conf. Ser. in Appl. Math., n. 95, SIAM, Philadelphia

  22. Moffatt, H.K., Kimura, Y.: Towards a finite-time singularity of the Navier-Stokes equations, Part 1. Derivation and analysis of dynamical system. J. Fluid Mech. 861, 930–967 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  24. Struwe, M.: On partial regularity results for the Navier-Stokes equations. Comm. Pure Appl. Math. 41(4), 437–458 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Taira, K.: Introduction to diffusive logistic equations in population dynamics. Korean J. Comput. Appl. Math. 9, 289 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tao, T.: Finite time blowup for an averaged three-dimensional Navier-Stokes equation. J. Am. Math. Soc. 29, 3 (2004)

    MathSciNet  Google Scholar 

  27. Wu, J.-Z., Ma, H.-Y., Zhou, M.-D.: Vorticity and Vortex Dynamics. Springer, New York (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Funaro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is affiliated to GNCS-INdAM and Research Associate at IMATI-CNR (Italy).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funaro, D. How and why non smooth solutions of the 3D Navier–Stokes equations could possibly develop. Numer. Math. 152, 789–817 (2022). https://doi.org/10.1007/s00211-022-01333-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-022-01333-9

Mathematics Subject Classification