Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Least-squares finite elements for distributed optimal control problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We provide a framework for the numerical approximation of distributed optimal control problems, based on least-squares finite element methods. Our proposed method simultaneously solves the state and adjoint equations and is \(\inf \)\(\sup \) stable for any choice of conforming discretization spaces. A reliable and efficient a posteriori error estimator is derived for problems where box constraints are imposed on the control. It can be localized and therefore used to steer an adaptive algorithm. For unconstrained optimal control problems, i.e., the set of controls being a Hilbert space, we obtain a coercive least-squares method and, in particular, quasi-optimality for any choice of discrete approximation space. For constrained problems we derive and analyze a variational inequality where the PDE part is tackled by least-squares finite element methods. We show that the abstract framework can be applied to a wide range of problems, including scalar second-order PDEs, the Stokes problem, and parabolic problems on space-time domains. Numerical examples for some selected problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bochev, P., Gunzburger, M.D.: Least-squares finite element methods for optimality systems arising in optimization and control problems. SIAM J. Numer. Anal. 43(6), 2517–2543 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Applied Mathematical Sciences, vol. 166. Springer, New York (2009)

    MATH  Google Scholar 

  3. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  4. Bramble, J.H., Lazarov, R.D., Pasciak, J.E.: A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comput. 66(219), 935–955 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Google Scholar 

  6. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    Book  MATH  Google Scholar 

  7. Cai, Z., Lazarov, R., Manteuffel, T.A., McCormick, S.F.: First-order system least squares for second-order partial differential equations. I. SIAM J. Numer. Anal. 31(6), 1785–1799 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42(2), 843–859 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carstensen, C., Storn, J.: Asymptotic exactness of the least-squares finite element residual. SIAM J. Numer. Anal. 56(4), 2008–2028 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

    Book  MATH  Google Scholar 

  11. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (1998)

    Google Scholar 

  12. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Führer, T., Heuer, N., Karkulik, M.: On the coupling of DPG and BEM. Math. Comput. 86(307), 2261–2284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Führer, T., Heuer, N., Stephan, E.P.: On the DPG method for Signorini problems. IMA J. Numer. Anal. 38(4), 1893–1926 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Führer, T., Karkulik, M.: Space-time least-squares finite elements for parabolic equations. Comput. Math. Appl. 92, 27–36 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Führer, T., Karkulik, M.: Space-time finite element methods for parabolic distributed optimal control problems. arXiv arXiv:2208.09879 (2022)

  17. Gantner, G., Stevenson, R.: Further results on a space-time FOSLS formulation of parabolic PDEs. ESAIM Math. Model. Numer. Anal. 55(1), 283–299 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gantner, G., Stevenson, R.: Applications of a space-time FOSLS formulation for parabolic PDEs. IMA J. Numer. Anal. (2023)

  19. Gong, W., Hinze, M., Zhou, Z.J.: Space-time finite element approximation of parabolic optimal control problems. J. Numer. Math. 20(2), 111–145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gunzburger, M.D., Kunoth, A.: Space-time adaptive wavelet methods for optimal control problems constrained by parabolic evolution equations. SIAM J. Control Optim. 49(3), 1150–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kärkkäinen, T., Kunisch, K., Tarvainen, P.: Augmented Lagrangian active set methods for obstacle problems. J. Optim. Theory Appl. 119(3), 499–533 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Langer, U., Steinbach, O., Tröltzsch, F., Yang, H.: Space-time finite element discretization of parabolic optimal control problems with energy regularization. SIAM J. Numer. Anal. 59(2), 675–695 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Langer, U., Steinbach, O., Tröltzsch, F., Yang, H.: Unstructured space-time finite element methods for optimal control of parabolic equations. SIAM J. Sci. Comput. 43(2), A744–A771 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lions, J.-L.: Optimal control of systems governed by partial differential equations. Die Grundlehren der mathematischen Wissenschaften, Band 170. Springer, New York-Berlin (1971). Translated from the French by S. K. Mitter

  25. Lions, J.-L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Article  MATH  Google Scholar 

  26. Meidner, D., Vexler, B.: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46(1), 116–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

    Book  Google Scholar 

  28. Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method, vol. 63, pp. 139–148 (1995). International Symposium on Mathematical Modelling and Computational Methods Modelling 94 (Prague, 1994)

  29. Tröltzsch, F.: Optimal control of partial differential equations, volume 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). Theory, methods and applications, Translated from the 2005 German original by Jürgen Sprekels

Download references

Acknowledgements

This work was supported by ANID through FONDECYT Projects and 1210391 (TF), and 1210579 (MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Führer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Führer, T., Karkulik, M. Least-squares finite elements for distributed optimal control problems. Numer. Math. 154, 409–442 (2023). https://doi.org/10.1007/s00211-023-01367-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-023-01367-7

Mathematics Subject Classification